
The flowchart package∗

Flowchart Shapes for TikZ
Adrian P. Robson†

19 March 2015

1 Introduction
This package provides shapes for drawing program flowcharts. They are based on
the classic IBM Flowcharting Template, which conforms to ISO 1028:1973, with
some IBM extensions. (this has since been revised by ISO 5807:1985).

At the moment, there is only a limited selection of the standard symbols, but
other symbols might be added in the future.

This package requires that makeshape [1] and of course PGF/TikZ [2] are also
installed .

2 The Symbols
The package provides the following symbols as defined in the ISO standard:

PROCESS
Process – Any processing function; or defined op-
erations causing change in value, form or location of
information.

DECISION
Decision – A decision or switching-type operation
that determines which of a number of alternative
paths are followed.

Predefined
Process

Predefined Process – One or more named opera-
tions or program steps specified in a subroutine or
another set of flowcharts.

STORAGE Storage – Input or output using any kind of online
storage.

∗This document corresponds to flowchart 3.3, dated 2015/03/19.
†adrian.robson@nepsweb.co.uk

1

TERMINAL
Terminal – A terminal point in a flowchart: start,
stop, halt delay or interrupt. It may show exit from
a closed subroutine.

3 Usage
The example below uses all of the symbols given in §2, and shows how they can
be laid out and connected with TikZ:

START

GET
DATA

C<3

STORE PROCESS

END

YES

It needs the following in the document’s preamble:

\usepackage{flowchart}
\usetikzlibrary{arrows}

The TikZ package is included in flowchart, so it does not have to be explic-
itly loaded. However, any \usetikzlibrary commands that are needed must be
placed after \loadpackage{flowchart}.

The flowchart above is produced by the following tikzpicture environment:

1 \begin{tikzpicture}[>=latex’,font={\sf \small}]
2

3 \def\smbwd{2cm}
4

5 \node (terminal1) at (0,0) [draw, terminal,
6 minimum width=\smbwd,
7 minimum height=0.5cm] {START};
8

9 \node (predproc1) at (0,-1.5) [draw, predproc, align=left,
10 minimum width=\smbwd,
11 minimum height=1cm] {GET\\ DATA};

2

12

13 \node (decide1) at (0,-3.5) [draw, decision,
14 minimum width=\smbwd,
15 minimum height=1cm] {C$<$3};
16

17 \node (storage1) at (0,-5.5) [draw, storage,
18 minimum width=\smbwd,
19 minimum height=1cm] {STORE};
20

21 \node (process1) at (3,-5.5) [draw, process,
22 minimum width=\smbwd,
23 minimum height=1cm] {PROCESS};
24

25 \coordinate (point1) at (0,-6.75);
26

27 \node (terminal2) at (0,-7.75) [draw, terminal,
28 minimum width=\smbwd,
29 minimum height=0.5cm] {END};
30

31 \draw[->] (terminal1) -- (predproc1);
32 \draw[->] (predproc1) -- (decide1);
33 \draw[->] (decide1) -| node[above]{YES} (process1);
34 \draw[->] (decide1) -- (storage1);
35 \draw[->] (process1) |- (point1);
36 \draw[->] (storage1) -- (point1) -- (terminal2);
37

38 \end{tikzpicture}

3.1 Symbols
The flow chart symbols are created as nodes, as shown in lines 5-7, which defines
a terminal shape. The minimum dimension keys should be used to create consis-
tently sized symbols. In particular, a defined value should be used for the width
in all symbols. So \smbwd is defined on line 3, and used in lines 6, 10, 14, 18, 22,
and 28.

3.2 Layout
In this example, we have used absolute coordinates to position the diagram’s nodes.
This works well for small flowcharts, but relative positioning might be better for
larger diagrams.

3.3 Connectors
The shapes are connected by drawing lines between them as shown in lines 31-36
of the example. Here, unqualified node names are used, but explicit anchor names
such as (nodename.north east) could be used instead.

It can sometimes be convenient to place a connector at an arbitrary point on
a shape. The (nodename.45) notation achieves this, where the number gives the
angle from the centre of the shape to the connecting point on its boundary.

3

Right angled connections are traditionally used in flowcharts, and these are
created with the -| and |- notations shown in lines 33 and 35 of the example.

Joining connectors is best done by declaring a named coordinate, and using it
as the meeting point. In the example, a coordinate called point1 is declared on
line 25, and then used in line 35 and 36 to connect process1 and storage1 to
terminal2.

4 Implementation
The implementation of flowchart.sty uses the makeshape package, which pro-
vides support for custom PGF shapes. With this, we have only have to create
boundary and anchor path macros, and anchor points for each shape.

There are three pairs of keys that have to be accommodated by PGF shapes:
inner and outer separation, and minimum dimensions. The makeshape package
has corrected text box macros \ctbnex and \ctbney, which automatically handle
inner separation; and the PGF keys \pgfshapeouterxsep, \pgfshapeouterysep,
\pgfshapeminheight and \pgfshapeminwidth, which give the outer separation
and minimum dimensions of the shape.

4.1 Preamble
The makeshape package provides the tikz package. However, the shapes library
is also needed:

1 \RequirePackage{makeshape}
2 \RequirePackage{tikz}
3 \usetikzlibrary{shapes}

4.2 Predproc Shape
This is the Predefined Process symbol.

4.2.1 Anchor and background paths

These macros define the paths that are used by the makeshape setpaths command
in the shape’s \pgfdeclareshape macro, which is described in §4.2.2.

\band The shape’s side band size is an internal constant:
4 \def\band{10pt}

\predprocAnchorpath The \predprocAnchorpath macro defines the shape’s anchor path. It ‘draws’ the
path on which the shape’s calculated anchor points lay. It is very similar to first
part of \predproc@shape that draws the outer path, but it corrects for outer
separation and does not draw any side bands.

5 \def\predprocAnchorpath{

First, get the corrected text box’s NE corner using \ctbnex and \ctbney, then
make room for the side band.

6 \pgf@xa=\ctbnex
7 \pgf@ya=\ctbney
8 \advance\pgf@xa by \band

4

Correct for minimum dimensions and outer separation:
9 \mincorrect{\pgf@xa}{\pgfshapeminwidth}

10 \advance\pgf@xa\pgfshapeouterxsep
11 \mincorrect{\pgf@ya}{\pgfshapeminheight}
12 \advance\pgf@ya\pgfshapeouterysep

Finally, draw the anchor path, which is a rectangle, using the values in \pgf@xa
and \pgf@ya that were calculated above:
13 \pgfpathmoveto{\pgfpoint{\pgf@xa}{\pgf@ya}}
14 \pgfpathlineto{\pgfpoint{\pgf@xa}{-\pgf@ya}}
15 \pgfpathlineto{\pgfpoint{-\pgf@xa}{-\pgf@ya}}
16 \pgfpathlineto{\pgfpoint{-\pgf@xa}{\pgf@ya}}
17 \pgfpathclose
18 }

\predprocBackground The \predprocBackground macro draws the shape’s path, including its side band.
It is used in the shape’s \backgroundpath macro.
19 \def\predprocBackground{

First, get the corrected text box’s NE corner using \ctbnex and \ctbney, then
make room for the side band.
20 \pgf@xa=\ctbnex
21 \pgf@ya=\ctbney
22 \advance\pgf@xa by \band

Correct for minimum dimensions but do not add outer separation:
23 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
24 \mincorrect{\pgf@ya}{\pgfshapeminheight}

Finally, draw the outer shape, which is a rectangle, using the values in \pgf@xa
and \pgf@ya that were calculated above:
25 \pgfpathmoveto{\pgfpoint{\pgf@xa}{\pgf@ya}}
26 \pgfpathlineto{\pgfpoint{\pgf@xa}{-\pgf@ya}}
27 \pgfpathlineto{\pgfpoint{-\pgf@xa}{-\pgf@ya}}
28 \pgfpathlineto{\pgfpoint{-\pgf@xa}{\pgf@ya}}
29 \pgfpathclose

Finally, we draw the inner shape, which completes the shape with its side
bands. The x-coordinate is aligned on the right side band position, then the side
bands are drawn:
30 \advance\pgf@xa by -\band
31 \pgfpathmoveto{\pgfpoint{\pgf@xa}{\pgf@ya}}
32 \pgfpathlineto{\pgfpoint{\pgf@xa}{-\pgf@ya}}
33 \pgfpathmoveto{\pgfpoint{-\pgf@xa}{\pgf@ya}}
34 \pgfpathlineto{\pgfpoint{-\pgf@xa}{-\pgf@ya}}
35 }

4.2.2 Predproc shape declaration

\pgfdeclareshape
predproc

This is the \pgfdeclareshape declaration for the predproc shape.
36 \pgfdeclareshape{predproc}{

The path macros defined in §4.2.1 are used as follows with the setpaths com-
mand provided by the makeshape package to draw the shape and make boundary
intersection calculations.
37 \setpaths{\predprocAnchorpath}{\predprocBackground}

5

\savedanchor
\northeast

The \northeast saved anchor is used to define the position of the NE corner of
the shape. The calculation is similar that used in the anchor path described in
§4.2.1, and corrects for inner and outer separation, and minimum dimensions. It
returns the coordinates of the point in \pgf@x and \pgf@y.
38 \savedanchor{\northeast}{
39 \pgf@x = \ctbnex
40 \advance\pgf@x by \band
41 \mincorrect{\pgf@x}{\pgfshapeminwidth}
42 \advance\pgf@x\pgfshapeouterxsep
43 \pgf@y = \ctbney
44 \mincorrect{\pgf@y}{\pgfshapeminheight}
45 \advance\pgf@y\pgfshapeouterysep
46 }

\anchor
north

north east
east

south east
south

south west
west

north west

There are some standard anchors, which are all based on the \northeast saved
anchor:
47 \anchor{north}{ \northeast \pgf@x=0pt }
48 \anchor{north east}{ \northeast }
49 \anchor{east}{ \northeast \pgf@y=0pt }
50 \anchor{south east}{ \northeast \pgf@y=-\pgf@y }
51 \anchor{south}{ \northeast \pgf@x=0pt \pgf@y=-\pgf@y }
52 \anchor{south west}{ \northeast \pgf@x=-\pgf@x \pgf@y=-\pgf@y }
53 \anchor{west}{ \northeast \pgf@x=-\pgf@x \pgf@y=0pt }
54 \anchor{north west}{ \northeast \pgf@x=-\pgf@x }

55 }

4.3 Storage Shape
4.3.1 Support Macros

\storagepath The storage shape’s background path is defined in \storagepath. It requires
the following register to be set:

\pgf@x x coordinate of NE corner excluding outer separation
\pgf@y y coordinate of NE corner excluding outer separation
\pgf@xc arc offset for y coordinate

The NE corner is stored in \pgf@xa and \pgf@ya and and the SW corner is
put in \pgf@xb and \pgf@yb. The SW x-coordinate has to be moved right by the
arc offset to compensate for the curve of the shapes west side.
56 \def\storagepath{
57 \pgf@xa=\pgf@x \pgf@ya=\pgf@y
58 \pgf@xb=-\pgf@xa \pgf@yb=-\pgf@ya
59 \advance\pgf@xb by \pgf@xc

The shape is drawn from its SW corner moving counter clockwise. The radius for
the arcs is the height.
60 \pgfpathmoveto{\pgfpoint{\pgf@xb}{\pgf@yb}}
61 \pgfpatharc{210}{150}{2*\pgf@ya}
62 \pgfpathlineto{\pgfpoint{\pgf@xa}{\pgf@ya}}
63 \pgfpatharc{150}{210}{2*\pgf@ya}
64 \pgfpathclose
65 }

6

\arcoffset The storage shape’s arc offset is calculated by the \arcoffset macro. The
required arc offset is b, and the shape’s height is h in the diagram below.

h

h/2

ab

h2 = a2 +
(

h

2

)2

a2 = h2 − h2

4 = 3h2

4
a = h

√
3/4 (1)

b = h − a = h − h
√

3/4

= h(1 −
√

3/4) ≈ 0.134h (2)

The macro’s parameters are:
#1 the calculated arc offset
#2 half the height

Equation 2 given above is implemented as follows:
66 \def\arcoffset#1#2{
67 \pgfmathsetlength#1{0.134*2*#2}
68 }

\storageParams The \storageParams macro calculates reference values for the shape with no outer
separation. The following have values assigned after it is called:

\pgf@x x-coordinate of NE corner excluding outer separation
\pgf@y y-coordinate of NE corner excluding outer separation
\pgf@xc arc offset for y-coordinate

First get the shape’s corrected text box:
69 \def\storageParams{
70 \pgf@xa=\ctbnex
71 \pgf@ya=\ctbney

Correct for minimum height but not for outer separation.
72 \mincorrect{\pgf@ya}{\pgfshapeminheight}

Calculate the room needed for the side arc, which is one of the macro’s outputs,
and use it to change the x-coordinate:
73 \arcoffset{\pgf@xc}{\pgf@ya}
74 \advance\pgf@xa by \pgf@xc

Finally, correct for minimum width and set the output registers:
75 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
76 \pgf@x=\pgf@xa
77 \pgf@y=\pgf@ya
78 }

\storageParamsOuter The \storageParamsOuter macro calculates reference values for the shape with
its outer separation included. The following have values assigned after it is called:

\pgf@x x coordinate of NE corner including outer separation
\pgf@y y coordinate of NE corner including outer separation
\pgf@xc arc offset for y coordinate

7

Its implementation has a lot in common with \storageParams. First, get the
NE corner of the corrected text box:
79 \def\storageParamsOuter{
80 \pgf@xa=\ctbnex
81 \pgf@ya=\ctbney

Correct for minimum height and outer separation:
82 \mincorrect{\pgf@ya}{\pgfshapeminheight}
83 \advance\pgf@ya\pgfshapeouterysep

Calculate the arc offset, which is an output, and make room for the side curve:
84 \arcoffset{\pgf@xc}{\pgf@ya}
85 \advance\pgf@xa by \pgf@xc

Finally, correct for minimum width and outer separation. Then set the output
registers:
86 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
87 \advance\pgf@xa\pgfshapeouterxsep
88 \pgf@x=\pgf@xa
89 \pgf@y=\pgf@ya
90 }

4.3.2 Anchor and background paths

The anchor and background path macros both use \storagepath, but with with
different parameters. The output registers of the macros \storageParams and
\storageParamsOuter are compatible with the inputs of \storagepath.

\storageAnchorpath The \storageAnchorpath macro defines the shape’s anchor path. It ‘draws’ the
path on which the shape’s calculated anchor points lay. This is similar to the
background path but it is corrected for outer separation and minimum dimensions.
91 \def\storageAnchorpath{
92 \storageParamsOuter
93 \storagepath
94 }

\storageBackground The \storageBackground macro draws the path that is the outer boundary of the
storage shape. This excludes outer separation but corrects for minimum height
and width.
95 \def\storageBackground{
96 \storageParams
97 \storagepath
98 }

4.3.3 Storage shape declaration

\pgfdeclareshape
storage

This is the \pgfdeclareshape declaration for the storage shape.
99 \pgfdeclareshape{storage}{

The path macros defined in §4.3.2 are used with the setpaths command provided
by the makeshape package to draw the shape and make boundary intersection
calculations:

100 \setpaths{\storageAnchorpath}{\storageBackground}

8

\savedanchor
\northeast

There are two saved anchors defined for the storage shape. The \northeast
saved anchor is used to define the position of the NE corner of the shape. The
calculation is similar that used in the anchor path described in §4.3.2, and corrects
for inner and outer separation, and minimum dimensions. It returns the coordi-
nates of the point in \pgf@x and \pgf@y, and its implementation is trivial since
\storageParamsOuter does the required work.

101 \savedanchor{\northeast}{
102 \storageParamsOuter
103 }

\savedanchor
\northeast

The \northeastArc saved anchor is similar, but corrects for the arc offset.
104 \savedanchor{\northeastArc}{
105 \storageParamsOuter
106 \advance\pgf@x by -\pgf@xc
107 }

\anchor
north

north east
east

south east
south

south west
west

north west

The standard anchors are defined. These are based on the \northeast and
\northeastArc saved anchors:

108 \anchor{north}{ \northeast \pgf@x=0pt }
109 \anchor{north east}{ \northeast }
110 \anchor{east}{ \northeastArc \pgf@y=0pt }
111 \anchor{south east}{ \northeast \pgf@y=-\pgf@y }
112 \anchor{south}{ \northeast \pgf@x=0pt \pgf@y=-\pgf@y }
113 \anchor{south west}{ \northeastArc \pgf@x=-\pgf@x \pgf@y=-\pgf@y }
114 \anchor{west}{ \northeast \pgf@x=-\pgf@x \pgf@y=0pt }
115 \anchor{north west}{ \northeastArc \pgf@x=-\pgf@x }

\anchor
north

north east
east

Three additional anchors are defined that follow the shape’s bounding rectangle.
116 \anchor{east r}{ \northeast \pgf@y=0pt }
117 \anchor{north west r}{ \northeast \pgf@x=-\pgf@x }
118 \anchor{south west r}{ \northeast \pgf@x=-\pgf@x \pgf@y=-\pgf@y }

119 }

4.4 Process Shape
\pgfdeclareshape

process
The process shape is simply implemented by inheriting relevant anchors and
paths from the standard rectangle shape without any changes:

120 \pgfdeclareshape{process}{
121 \inheritsavedanchors[from=rectangle]
122 \inheritanchor[from=rectangle]{center}
123 \inheritanchor[from=rectangle]{text}
124 \inheritanchor[from=rectangle]{north}
125 \inheritanchor[from=rectangle]{north east}
126 \inheritanchor[from=rectangle]{east}
127 \inheritanchor[from=rectangle]{south east}
128 \inheritanchor[from=rectangle]{south}
129 \inheritanchor[from=rectangle]{south west}
130 \inheritanchor[from=rectangle]{west}
131 \inheritanchor[from=rectangle]{north west}
132 \inheritbackgroundpath[from=rectangle]
133 \inheritanchorborder[from=rectangle]
134 }

9

4.5 Decision Shape
4.5.1 Support Macros

Two macros \decisionref and \decisionrefout give a reference point for the
decision shape. The default shape is a rotated square which touches the corrected
text box. The location and calculation of the default reference point is illustrated
below:

(0, xt + yt)

(yt + xt, 0)

45◦

reference point
(yt + xt, xt + yt)

corrected text box (xt, yt)

\decisionrefout The \decisionrefout macro gives a reference point on the bounding rectangle of
the decision shape. Inner and outer separation are included, and it is corrected
for the shape’s minimum dimensions. On completion, the coordinates of the point
are in \pgf@xa and \pgf@ya.

First, the coordinates of the corrected text box are put into some registers:
135 \def\decisionrefout{
136 \pgf@xa=\ctbnex
137 \pgf@ya=\ctbney
138 \pgf@xb=\ctbnex
139 \pgf@yb=\ctbney

The reference point’s x-coordinates is calculated and corrected for minimum width,
and outer x-separation:

140 \advance\pgf@xa by \pgf@yb
141 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
142 \advance\pgf@xa by \pgfshapeouterxsep

Then the calculation and correction is repeated for the y-coordinate:
143 \advance\pgf@ya by \pgf@xb
144 \mincorrect{\pgf@ya}{\pgfshapeminheight}
145 \advance\pgf@ya by \pgfshapeouterysep
146 }

\decisionref The \decisionref macro is almost the same as \decisionrefout but has no
correction for outer separation. Again, the coordinates of the point are in \pgf@xa
and \pgf@ya on completion:

147 \def\decisionref{
148 \pgf@xa=\ctbnex
149 \pgf@ya=\ctbney
150 \pgf@xb=\ctbnex
151 \pgf@yb=\ctbney
152 \advance\pgf@xa by \pgf@yb
153 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
154 \advance\pgf@ya by \pgf@xb

10

155 \mincorrect{\pgf@ya}{\pgfshapeminheight}
156 }

\decisionpath The \decisionpath macro draws the \decision shape’s path. It expects the
reference point coordinates to be in \pgf@xa and \pgf@ya. The path is drawn
clockwise starting at the top:

157 \def\decisionpath{
158 \def\refx{\pgf@xa}
159 \def\refy{\pgf@ya}
160 \pgfpathmoveto{\pgfpoint{0}{\refy}}
161 \pgfpathlineto{\pgfpoint{\refx}{0}}
162 \pgfpathlineto{\pgfpoint{0}{-\refy}}
163 \pgfpathlineto{\pgfpoint{-\refx}{0}}
164 \pgfpathclose
165 }

4.5.2 Anchor and background paths

\decisionanchor The \decisionanchor macro is the anchor path for the shape’s setpath:
166 \def\decisionanchor{
167 \decisionrefout
168 \decisionpath
169 }

\decisionborder The \decisionborder macro is the border path for the shape’s setpath:
170 \def\decisionborder{
171 \decisionref
172 \decisionpath
173 }

4.5.3 Decision shape declaration

\pgfdeclareshape
decision

This is the \pgfdeclareshape declaration for the decision shape.
174 \pgfdeclareshape{decision}{

The path macros defined in §4.6.2 are used with the setpaths command provided
by the makeshape package to draw the shape and make boundary intersection
calculations:

175 \setpaths{\decisionanchor}{\decisionborder}

There are three saved anchors defined for the decision shape. They have to
correct for inner and outer separation, and minimum dimensions; and return the
coordinates of the point in \pgf@x and \pgf@y. However, this is simplified because
\decisionrefout does the required work.

\savedanchor
\north

The \north saved anchor uses the y-coordinate of the reference point:
176 \savedanchor{\north}{
177 \decisionrefout
178 \pgf@x = 0pt
179 \pgf@y = \pgf@ya
180 }

11

\savedanchor
\north

The \east saved anchor uses the x-coordinate of the reference point:
181 \savedanchor{\east}{
182 \decisionrefout
183 \pgf@x = \pgf@xa
184 \pgf@y = 0pt
185 }

\savedanchor
\northeast

The \northeast saved anchor uses the both coordinates of the reference point to
calculate the required point:

186 \savedanchor{\northeast}{
187 \decisionrefout
188 \divide\pgf@xa by 2
189 \divide\pgf@ya by 2
190 \pgf@x = \pgf@xa
191 \pgf@y = \pgf@ya
192 }

\anchor
north

north east
east

south east
south

south west
west

north west

The standard anchors are defined. These are based on the \north \east and
\northeast saved anchors:

193 \anchor{north}{ \north }
194 \anchor{north east}{ \northeast }
195 \anchor{east}{ \east }
196 \anchor{south east}{ \northeast \pgf@y=-\pgf@y }
197 \anchor{south}{ \north \pgf@y=-\pgf@y }
198 \anchor{south west}{ \northeast \pgf@x=-\pgf@x \pgf@y=-\pgf@y }
199 \anchor{west}{ \east \pgf@x=-\pgf@x }
200 \anchor{north west}{ \northeast \pgf@x=-\pgf@x }

201 }

4.6 Terminal Shape
4.6.1 Support Macros

Two macros \terminalrefneout and \terminalrefne give a reference point on
the boundary surface of the terminal shape.

reference point

\terminalrefneout The \terminalrefneout macro gives a reference point on the boundary surface of
the terminal shape. Inner and outer separation are included, and it is corrected
for the shape’s minimum dimensions. On completion, the coordinates of the point
are in \pgf@xa and \pgf@ya.

First, the coordinates of the corrected text box are obtained, and then the
width of the rounded end is add to the x-coordinate to get the bounding dimen-
sions:

202 \def\terminalrefneout{
203 \pgf@xa=\ctbnex
204 \pgf@ya=\ctbney
205 \advance\pgf@xa by \pgf@ya

12

Then these bounding coordinates are corrected for minimum dimensions, and outer
separation:

206 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
207 \advance\pgf@xa\pgfshapeouterxsep
208 \mincorrect{\pgf@ya}{\pgfshapeminheight}
209 \advance\pgf@ya\pgfshapeouterysep

Finally, the corrected x-coordinate is reduced by the width of the rounded end to
give the required reference point:

210 \advance\pgf@xa by -\pgf@ya
211 }

\terminalrefne The \terminalrefne macro is almost the same as \terminalrefneout but has no
correction for outer separation. Again, the coordinates of the point are in \pgf@xa
and \pgf@ya on completion:

212 \def\terminalrefne{
213 \pgf@xa=\ctbnex
214 \pgf@ya=\ctbney
215 \advance\pgf@xa by \pgf@ya
216 \mincorrect{\pgf@xa}{\pgfshapeminwidth}
217 \mincorrect{\pgf@ya}{\pgfshapeminheight}
218 \advance\pgf@xa by -\pgf@ya
219 }

\terminalpath The \terminalpath macro draws the terminal shape’s path. It expects the
reference point coordinates to be in \pgf@xa and \pgf@ya. The path is drawn
anticlockwise:

220 \def\terminalpath{
221 \def\refx{\pgf@xa}
222 \def\refy{\pgf@ya}
223 \def\radius{\refy}
224 \pgfpathmoveto{\pgfpoint{\refx}{\refy}}
225 \pgfpathlineto{\pgfpoint{-\refx}{\refy}}
226 \pgfpatharc{90}{270}{\radius}
227 \pgfpathlineto{\pgfpoint{\refx}{-\refy}}
228 \pgfpatharc{270}{360}{\radius}
229 \pgfpatharc{0}{90}{\radius}
230 \pgfpathclose
231 }

4.6.2 Anchor and background paths

\terminalanchor The \terminalanchor macro is the anchor path for the shape’s setpath:
232 \def\terminalanchor{
233 \terminalrefneout
234 \terminalpath
235 }

\terminalborder The \terminalborder macro is the border path for the shape’s setpath:
236 \def\terminalborder{
237 \terminalrefne
238 \terminalpath
239 }

13

4.6.3 Terminal shape declaration

\pgfdeclareshape
terminal

This is the \pgfdeclareshape declaration for the terminal shape.
240 \pgfdeclareshape{terminal}{

The path macros defined in §4.6.2 are used with the setpaths command provided
by the makeshape package to draw the shape and make boundary intersection
calculations:

241 \setpaths{\terminalanchor}{\terminalborder}

\savedanchor
\northeast

There are two saved anchors defined for the terminal shape. The \northeast
saved anchor gives the position of the shape’s ‘reference point’ used above. It
corrects for inner and outer separation, and minimum dimensions. It returns the
coordinates of the point in \pgf@x and \pgf@y, and its implementation is simple
since \terminalrefneout does the required work.

242 \savedanchor{\northeast}{
243 \terminalrefneout
244 \pgf@x = \pgf@xa
245 \pgf@y = \pgf@ya
246 }

\savedanchor
\northeastBB

The \northeastBB macro gives the coordinates of the NE corner of the shape’s
bounding rectangle in \pgf@x and \pgf@y. It corrects for inner and outer sepa-
ration, and minimum dimensions. It is obtain by adding the width of the shape’s
round end to the x-coordinate of the reference point:

247 \savedanchor{\northeastBB}{
248 \terminalrefneout
249 \advance \pgf@xa by \pgf@ya
250 \pgf@x = \pgf@xa
251 \pgf@y = \pgf@ya
252 }

\anchor
north

north east
east

south east
south

south west
west

north west

The standard anchors are defined. These are based on the \northeast and
\northeastBB saved anchors:

253 \anchor{north}{ \northeast \pgf@x=0pt }
254 \anchor{north east}{ \northeast }
255 \anchor{east}{ \northeastBB \pgf@y=0pt }
256 \anchor{south east}{ \northeast \pgf@y=-\pgf@y }
257 \anchor{south}{ \northeast \pgf@x=0pt \pgf@y=-\pgf@y }
258 \anchor{south west}{ \northeast \pgf@x=-\pgf@x \pgf@y=-\pgf@y }
259 \anchor{west}{ \northeastBB \pgf@x=-\pgf@x \pgf@y=0pt }
260 \anchor{north west}{ \northeast \pgf@x=-\pgf@x }

\anchor
north east r
south east r
south west r
north west r

Four additional anchors are defined that follow the shape’s bounding rectangle.
261 \anchor{north east r}{\northeastBB}
262 \anchor{south east r}{\northeastBB \pgf@y=-\pgf@y}
263 \anchor{south west r}{\northeastBB \pgf@x=-\pgf@x \pgf@y=-\pgf@y}
264 \anchor{north west r}{\northeastBB \pgf@x=-\pgf@x}

265 }

14

References
[1] Adrian P. Robson, The makeshape package and a method for creating custom

shapes in PGF, 2013. Available as makeshape.pdf from ctan.org.

[2] Till Tantau, The TikZ and PGF Packages, Manual for version 2.10, 2010.
Available as pgfmanual.pdf from ctan.org.

15

