2004-01-23
Revision History | ||
---|---|---|
Revision 1.0 | 2004-02-19 | FW |
Initial release, reviewed by LDP | ||
Revision 0.3.3 | 2004-01-23 | fyw |
Add decompress_kernel() details; Fix bugs reported in TLDP final review. | ||
Revision 0.3 | 2003-12-07 | fyw |
Add contents on SMP, GRUB and LILO; Fix and enhance. | ||
Revision 0.2 | 2003-08-17 | fyw |
Adapt to Linux 2.4.20. | ||
Revision 0.1 | 2003-04-20 | fyw |
Change to DocBook XML format. |
Abstract
This document describes Linux i386 boot code, serving as a study guide and source commentary. In addition to C-like pseudocode source commentary, it also presents keynotes of toolchains and specs related to kernel development. It is designed to help:
kernel newbies to understand Linux i386 boot code, and
kernel veterans to recall Linux boot procedure.
Table of Contents
This document serves as a study guide and source commentary for Linux i386 boot code. In addition to C-like pseudocode source commentary, it also presents keynotes of toolchains and specs related to kernel development. It is designed to help:
kernel newbies to understand Linux i386 boot code, and
kernel veterans to recall Linux boot procedure.
Current release is based on Linux 2.4.20.
The project homepage for this document is hosted by China Linux Forum. Working documents may also be found at the author's personal webpage at Yahoo! GeoCities.
This document, Linux i386 Boot Code HOWTO, is copyrighted (c) 2003, 2004 by Feiyun Wang. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available at http://www.gnu.org/copyleft/fdl.html.
Linux is a registered trademark of Linus Torvalds.
No liability for the contents of this document can be accepted. Use the concepts, examples and information at your own risk. There may be errors and inaccuracies which could be damaging to your system. Proceed with caution, and although this is highly unlikely, the author(s) do not take any responsibility.
Owners hold all copyrights, unless specifically noted otherwise. Use of a term in this document should not be regarded as affecting the validity of any trademark or service mark. Naming of particular products or brands should not be seen as endorsements.
In this document, I have the pleasure of acknowledging:
Jennifer Riley <kevten@NOSPAM.email.com>
Tabatha Marshall <tabatha@NOSPAM.merlinmonroe.com>
Randy Dunlap <rddunlap@NOSPAM.ieee.org>
Names will remain on this list for a year.
Feedback is most certainly welcome for this document. Send your additions, comments and criticisms to the following email address:
Feiyun Wang <feiyunw@yahoo.com>
Before perusing Linux code, we should get some basic idea about how Linux is composed, compiled and linked. A straightforward way to achieve this goal is to understand Linux makefiles. Check Cross-Referencing Linux if you prefer online source browsing.
Here are some well-known targets in this top-level makefile:
xconfig, menuconfig, config, oldconfig:
generate kernel configuration file
linux/.config
;
depend, dep: generate dependency files, like
linux/.depend
,
linux/.hdepend
and
.depend
in subdirectories;
vmlinux: generate resident kernel image
linux/vmlinux
, the most important target;
modules, modules_install:
generate and install modules in
/lib/modules/$(KERNELRELEASE)
;
tags: generate tag file
linux/tags
, for source browsing with
vim.
Overview of linux/Makefile
is outlined below:
include .depend include .config include arch/i386/Makefile vmlinux: generate linux/vmlinux /* entry point "stext" defined in arch/i386/kernel/head.S */ $(LD) -T $(TOPDIR)/arch/i386/vmlinux.lds -e stext /* $(HEAD) */ + from arch/i386/Makefile arch/i386/kernel/head.o arch/i386/kernel/init_task.o init/main.o init/version.o init/do_mounts.o --start-group /* $(CORE_FILES) */ + from arch/i386/Makefile arch/i386/kernel/kernel.o arch/i386/mm/mm.o kernel/kernel.o mm/mm.o fs/fs.o ipc/ipc.o /* $(DRIVERS) */ drivers/... char/char.o block/block.o misc/misc.o net/net.o media/media.o cdrom/driver.o and other static linked drivers + from arch/i386/Makefile arch/i386/math-emu/math.o (ifdef CONFIG_MATH_EMULATION) /* $(NETWORKS) */ net/network.o /* $(LIBS) */ + from arch/i386/Makefile arch/i386/lib/lib.a lib/lib.a --end-group -o vmlinux $(NM) vmlinux | grep ... | sort > System.map tags: generate linux/tags for vim modules: generate modules modules_install: install modules clean mrproper distclean: clean up build directory psdocs pdfdocs htmldocs mandocs: generate kernel documents include Rules.make rpm: generate an rpm
"--start-group" and "--end-group" are ld command line options to resolve symbol reference problem. Refer to Using LD, the GNU linker: Command Line Options for details.
Rules.make
contains rules which are shared
between multiple Makefiles.
After compilation, ld combines a number of
object and archive files, relocates their data and
ties up symbol references.
linux/arch/i386/vmlinux.lds
is designated by
linux/Makefile
as the linker script used
in linking the resident kernel image linux/vmlinux
.
/* ld script to make i386 Linux kernel * Written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>; */ OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386") OUTPUT_ARCH(i386) /* "ENTRY" is overridden by command line option "-e stext" in linux/Makefile */ ENTRY(_start) /* Output file (linux/vmlinux) layout. * Refer to Using LD, the GNU linker: Specifying Output Sections */ SECTIONS { /* Output section .text starts at address 3G+1M. * Refer to Using LD, the GNU linker: The Location Counter */ . = 0xC0000000 + 0x100000; _text = .; /* Text and read-only data */ .text : { *(.text) *(.fixup) *(.gnu.warning) } = 0x9090 /* Unallocated holes filled with 0x9090, i.e. opcode for "NOP NOP". * Refer to Using LD, the GNU linker: Optional Section Attributes */ _etext = .; /* End of text section */ .rodata : { *(.rodata) *(.rodata.*) } .kstrtab : { *(.kstrtab) } /* Aligned to next 16-bytes boundary. * Refer to Using LD, the GNU linker: Arithmetic Functions */ . = ALIGN(16); /* Exception table */ __start___ex_table = .; __ex_table : { *(__ex_table) } __stop___ex_table = .; __start___ksymtab = .; /* Kernel symbol table */ __ksymtab : { *(__ksymtab) } __stop___ksymtab = .; .data : { /* Data */ *(.data) CONSTRUCTORS } /* For "CONSTRUCTORS", refer to * Using LD, the GNU linker: Option Commands */ _edata = .; /* End of data section */ . = ALIGN(8192); /* init_task */ .data.init_task : { *(.data.init_task) } . = ALIGN(4096); /* Init code and data */ __init_begin = .; .text.init : { *(.text.init) } .data.init : { *(.data.init) } . = ALIGN(16); __setup_start = .; .setup.init : { *(.setup.init) } __setup_end = .; __initcall_start = .; .initcall.init : { *(.initcall.init) } __initcall_end = .; . = ALIGN(4096); __init_end = .; . = ALIGN(4096); .data.page_aligned : { *(.data.idt) } . = ALIGN(32); .data.cacheline_aligned : { *(.data.cacheline_aligned) } __bss_start = .; /* BSS */ .bss : { *(.bss) } _end = . ; /* Output section /DISCARD/ will not be included in the final link output. * Refer to Using LD, the GNU linker: Section Definitions */ /* Sections to be discarded */ /DISCARD/ : { *(.text.exit) *(.data.exit) *(.exitcall.exit) } /* The following output sections are addressed at memory location 0. * Refer to Using LD, the GNU linker: Optional Section Attributes */ /* Stabs debugging sections. */ .stab 0 : { *(.stab) } .stabstr 0 : { *(.stabstr) } .stab.excl 0 : { *(.stab.excl) } .stab.exclstr 0 : { *(.stab.exclstr) } .stab.index 0 : { *(.stab.index) } .stab.indexstr 0 : { *(.stab.indexstr) } .comment 0 : { *(.comment) } }
linux/arch/i386/Makefile
is included by
linux/Makefile
to provide i386 specific
items and terms.
All the following targets depend on target vmlinux
of linux/Makefile
.
They are accomplished by making corresponding targets in
linux/arch/i386/boot/Makefile
with some options.
Table 1. Targets in linux/arch/i386/Makefile
Target | Command |
---|---|
zImage [a] | @$(MAKE) -C arch/i386/boot zImage [b] |
bzImage | @$(MAKE) -C arch/i386/boot bzImage |
zlilo | @$(MAKE) -C arch/i386/boot BOOTIMAGE=zImage zlilo |
bzlilo | @$(MAKE) -C arch/i386/boot BOOTIMAGE=bzImage zlilo |
zdisk | @$(MAKE) -C arch/i386/boot BOOTIMAGE=zImage zdisk |
bzdisk | @$(MAKE) -C arch/i386/boot BOOTIMAGE=bzImage zdisk |
install | @$(MAKE) -C arch/i386/boot BOOTIMAGE=bzImage install |
[a] zImage alias: compressed; [b] "-C" is a MAKE command line option to change directory before reading makefiles; Refer to GNU make: Summary of Options and GNU make: Recursive Use of make. |
It is worth noticing that this makefile redefines
some environment variables which are exported by
linux/Makefile
, specifically:
OBJCOPY=$(CROSS_COMPILE)objcopy -O binary -R .note -R .comment -S
The effect will be passed to subdirectory makefiles and will change the tool's behavior. Refer to GNU Binary Utilities: objcopy for objcopy command line option details.
Not sure why $(LIBS) includes "$(TOPDIR)/arch/i386/lib/lib.a" twice:
LIBS := $(TOPDIR)/arch/i386/lib/lib.a $(LIBS) $(TOPDIR)/arch/i386/lib/lib.a
It may be employed to work around linking problems with some toolchains.
linux/arch/i386/boot/Makefile
is somehow
independent as it is not included by either
linux/arch/i386/Makefile
or linux/Makefile
.
However, they do have some relationship:
linux/Makefile
: provides resident kernel image
linux/vmlinux
;
linux/arch/i386/boot/Makefile
:
provides bootstrap;
linux/arch/i386/Makefile
:
makes sure linux/vmlinux
is ready
before the bootstrap is constructed,
and exports targets (like bzImage)
to linux/Makefile
.
$(BOOTIMAGE) value, which is for target zdisk, zlilo
or zdisk, comes from
linux/arch/i386/Makefile
.
Table 2. Targets in linux/arch/i386/boot/Makefile
Target | Command |
---|---|
zImage |
$(OBJCOPY) compressed/vmlinux compressed/vmlinux.out tools/build bootsect setup compressed/vmlinux.out $(ROOT_DEV) > zImage |
bzImage |
$(OBJCOPY) compressed/bvmlinux compressed/bvmlinux.out tools/build -b bbootsect bsetup compressed/bvmlinux.out $(ROOT_DEV) \ > bzImage |
zdisk |
dd bs=8192 if=$(BOOTIMAGE) of=/dev/fd0 |
zlilo |
if [ -f $(INSTALL_PATH)/vmlinuz ]; then mv $(INSTALL_PATH)/vmlinuz $(INSTALL_PATH)/vmlinuz.old; fi if [ -f $(INSTALL_PATH)/System.map ]; then mv $(INSTALL_PATH)/System.map $(INSTALL_PATH)/System.old; fi cat $(BOOTIMAGE) > $(INSTALL_PATH)/vmlinuz cp $(TOPDIR)/System.map $(INSTALL_PATH)/ if [ -x /sbin/lilo ]; then /sbin/lilo; else /etc/lilo/install; fi |
install |
sh -x ./install.sh $(KERNELRELEASE) $(BOOTIMAGE) $(TOPDIR)/System.map "$(INSTALL_PATH)" |
tools/build builds boot image
zImage from
{bootsect, setup, compressed/vmlinux.out}, or
bzImage from
{bbootsect, bsetup, compressed/bvmlinux,out}.
linux/Makefile
"export ROOT_DEV = CURRENT".
Note that $(OBJCOPY) has been redefined by
linux/arch/i386/Makefile
in Section 2.3, “linux/arch/i386/Makefile”.
Table 3. Supporting targets in linux/arch/i386/boot/Makefile
Target: Prerequisites | Command |
---|---|
compressed/vmlinux: linux/vmlinux | @$(MAKE) -C compressed vmlinux |
compressed/bvmlinux: linux/vmlinux | @$(MAKE) -C compressed bvmlinux |
tools/build: tools/build.c | $(HOSTCC) $(HOSTCFLAGS) -o $@ $< -I$(TOPDIR)/include [a] |
bootsect: bootsect.o | $(LD) -Ttext 0x0 -s --oformat binary bootsect.o [b] |
bootsect.o: bootsect.s | $(AS) -o $@ $< |
bootsect.s: bootsect.S ... | $(CPP) $(CPPFLAGS) -traditional $(SVGA_MODE) $(RAMDISK) $< -o $@ |
bbootsect: bbootsect.o | $(LD) -Ttext 0x0 -s --oformat binary $< -o $@ |
bbootsect.o: bbootsect.s | $(AS) -o $@ $< |
bbootsect.s: bootsect.S ... | $(CPP) $(CPPFLAGS) -D__BIG_KERNEL__ -traditional $(SVGA_MODE) $(RAMDISK) $< -o $@ |
setup: setup.o | $(LD) -Ttext 0x0 -s --oformat binary -e begtext -o $@ $< |
setup.o: setup.s | $(AS) -o $@ $< |
setup.s: setup.S video.S ... | $(CPP) $(CPPFLAGS) -D__ASSEMBLY__ -traditional $(SVGA_MODE) $(RAMDISK) $< -o $@ |
bsetup: bsetup.o | $(LD) -Ttext 0x0 -s --oformat binary -e begtext -o $@ $< |
bsetup.o: bsetup.s | $(AS) -o $@ $< |
bsetup.s: setup.S video.S ... | $(CPP) $(CPPFLAGS) -D__BIG_KERNEL__ -D__ASSEMBLY__ -traditional $(SVGA_MODE) $(RAMDISK) $< -o $@ |
[a] "$@" means target, "$<" means first prerequisite; Refer to GNU make: Automatic Variables; [b] "--oformat binary" asks for raw binary output, which is identical to the memory dump of the executable; Refer to Using LD, the GNU linker: Command Line Options. |
Note that it has "-D__BIG_KERNEL__" when compile
bootsect.S
to bbootsect.s
, and
setup.S
to bsetup.s
.
They must be Place Independent Code (PIC), thus what "-Ttext" option is
doesn't matter.
This makefile handles image (de)compression mechanism.
It is good to separate (de)compression from bootstrap. This divide-and-conquer solution allows us to easily improve (de)compression mechanism or to adopt a new bootstrap method.
Directory
linux/arch/i386/boot/compressed/
contains two source files:
head.S
and misc.c
.
Table 4. Targets in linux/arch/i386/boot/compressed/Makefile
Target | Command |
---|---|
vmlinux[a] | $(LD) -Ttext 0x1000 -e startup_32 -o vmlinux head.o misc.o piggy.o |
bvmlinux | $(LD) -Ttext 0x100000 -e startup_32 -o bvmlinux head.o misc.o piggy.o |
head.o | $(CC) $(AFLAGS) -traditional -c head.S |
misc.o |
$(CC) $(CFLAGS) -DKBUILD_BASENAME=$(subst $(comma),_,$(subst -,_,$(*F))) -c misc.c[b] |
piggy.o | tmppiggy=_tmp_$$$$piggy; \ rm -f $$tmppiggy $$tmppiggy.gz $$tmppiggy.lnk; \ $(OBJCOPY) $(SYSTEM) $$tmppiggy; \ gzip -f -9 < $$tmppiggy > $$tmppiggy.gz; \ echo "SECTIONS { .data : { input_len = .; \ LONG(input_data_end - input_data) input_data = .; \ *(.data) input_data_end = .; }}" > $$tmppiggy.lnk; \ $(LD) -r -o piggy.o -b binary $$tmppiggy.gz -b elf32-i386 \ -T $$tmppiggy.lnk; \ rm -f $$tmppiggy $$tmppiggy.gz $$tmppiggy.lnk |
[a]
Target vmlinux here is different from
that defined in [b] "subst" is a MAKE function; Refer to GNU make: Functions for String Substitution and Analysis. |
piggy.o
contains
variable input_len
and gzipped linux/vmlinux
.
input_len is at the beginning of
piggy.o
, and it is equal to the size of
piggy.o
excluding
input_len itself. Refer to
Using LD, the GNU linker: Section Data Expressions
for "LONG(expression)" in piggy.o linker script.
To be exact, it is not linux/vmlinux
itself
(in ELF format) that is gzipped but its binary image,
which is generated by objcopy command.
Note that $(OBJCOPY) has been redefined by
linux/arch/i386/Makefile
in
Section 2.3, “linux/arch/i386/Makefile” to output raw binary
using "-O binary" option.
When linking {bootsect, setup} or {bbootsect, bsetup}, $(LD) specifies "--oformat binary" option to output them in binary format. When making zImage (or bzImage), $(OBJCOPY) generates an intermediate binary output from compressed/vmlinux (or compressed/bvmlinux) too. It is vital that all components in zImage or bzImage are in raw binary format, so that the image can run by itself without asking a loader to load and relocate it.
Both vmlinux and bvmlinux
prepend head.o
and misc.o
before piggy.o
,
but they are linked against different start addresses (0x1000 vs 0x100000).
linux/arch/i386/tools/build.c
is a host utility to
generate zImage or bzImage.
In linux/arch/i386/boot/Makefile
:
tools/build bootsect setup compressed/vmlinux.out $(ROOT_DEV) > zImage tools/build -b bbootsect bsetup compressed/bvmlinux.out $(ROOT_DEV) > bzImage
"-b" means is_big_kernel, used to check whether system image is too big.
tools/build outputs the following components to stdout, which is redirected to zImage or bzImage:
bootsect or bbootsect: from
linux/arch/i386/boot/bootsect.S
, 512 bytes;
setup or bsetup: from
linux/arch/i386/boot/setup.S
,
4 sectors or more, sector aligned;
compressed/vmlinux.out or compressed/bvmlinux.out, including:
head.o: from
linux/arch/i386/boot/compressed/head.S
;
misc.o: from
linux/arch/i386/boot/compressed/misc.c
;
piggy.o: from input_len
and gzipped linux/vmlinux
.
tools/build will change some contents of bootsect or bbootsect when outputting to stdout:
Table 5. Modification made by tools/build
Offset | Byte | Variable | Comment |
---|---|---|---|
1F1 (497) | 1 | setup_sectors | number of setup sectors, >=4 |
1F4 (500) | 2 | sys_size | system size in 16-bytes, little-endian |
1FC (508) | 1 | minor_root | root dev minor |
1FD (509) | 1 | major_root | root dev major |
In the following chapters, compressed/vmlinux will be referred as vmlinux and compressed/bvmlinux as bvmlinux, if not confusing.
Linux Kernel Makefiles:
linux/Documentation/kbuild/makefiles.txt
Given that we are booting up bzImage, which is
composed of bbootsect, bsetup
and bvmlinux (head.o, misc.o, piggy.o),
the first floppy sector, bbootsect (512 bytes),
which is compiled from linux/arch/i386/boot/bootsect.S
,
is loaded by BIOS to 07C0:0.
The reset of bzImage (bsetup
and bvmlinux) has not been loaded yet.
SETUPSECTS = 4 /* default nr of setup-sectors */ BOOTSEG = 0x07C0 /* original address of boot-sector */ INITSEG = DEF_INITSEG (0x9000) /* we move boot here - out of the way */ SETUPSEG = DEF_SETUPSEG (0x9020) /* setup starts here */ SYSSEG = DEF_SYSSEG (0x1000) /* system loaded at 0x10000 (65536) */ SYSSIZE = DEF_SYSSIZE (0x7F00) /* system size: # of 16-byte clicks */ /* to be loaded */ ROOT_DEV = 0 /* ROOT_DEV is now written by "build" */ SWAP_DEV = 0 /* SWAP_DEV is now written by "build" */ .code16 .text /////////////////////////////////////////////////////////////////////////////// _start: { // move ourself from 0x7C00 to 0x90000 and jump there. move BOOTSEG:0 to INITSEG:0 (512 bytes); goto INITSEG:go; }
bbootsect has been moved to INITSEG:0 (0x9000:0). Now we can forget BOOTSEG.
/////////////////////////////////////////////////////////////////////////////// // prepare stack and disk parameter table go: { SS:SP = INITSEG:3FF4; // put stack at INITSEG:0x4000-12 /* 0x4000 is an arbitrary value >= * length of bootsect + length of setup + room for stack; * 12 is disk parm size. */ copy disk parameter (pointer in 0:0078) to INITSEG:3FF4 (12 bytes); // int1E: SYSTEM DATA - DISKETTE PARAMETERS patch sector count to 36 (offset 4 in parameter table, 1 byte); set disk parameter table pointer (0:0078, int1E) to INITSEG:3FF4; }
Make sure SP is initialized immediately after SS register. The recommended method of modifying SS is to use "lss" instruction according to IA-32 Intel Architecture Software Developer's Manual (Vol.3. Ch.5.8.3. Masking Exceptions and Interrupts When Switching Stacks).
Stack operations, such as push and pop, will be OK now. First 12 bytes of disk parameter have been copied to INITSEG:3FF4.
/////////////////////////////////////////////////////////////////////////////// // get disk drive parameters, specifically number of sectors/track. char disksizes[] = {36, 18, 15, 9}; int sectors; { SI = disksizes; // i = 0; do { probe_loop: sectors = DS:[SI++]; // sectors = disksizes[i++]; if (SI>=disksizes+4) break; // if (i>=4) break; int13/AH=02h(AL=1, ES:BX=INITSEG:0200, CX=sectors, DX=0); // int13/AH=02h: DISK - READ SECTOR(S) INTO MEMORY } while (failed to read sectors); }
"lodsb" loads a byte from DS:[SI] to AL and increases SI automatically.
The number of sectors per track has been saved in variable sectors.
bsetup (setup_sects sectors) will be loaded right after bbootsect, i.e. SETUPSEG:0. Note that INITSEG:0200==SETUPSEG:0 and setup_sects has been changed by tools/build to match bsetup size in Section 2.6, “linux/arch/i386/tools/build.c”.
/////////////////////////////////////////////////////////////////////////////// got_sectors: word sread; // sectors read for current track char setup_sects; // overwritten by tools/build { print out "Loading"; /* int10/AH=03h(BH=0): VIDEO - GET CURSOR POSITION AND SIZE * int10/AH=13h(AL=1, BH=0, BL=7, CX=9, DH=DL=0, ES:BP=INITSEG:$msg1): * VIDEO - WRITE STRING */ // load setup-sectors directly after the moved bootblock (at 0x90200). SI = &sread; // using SI to index sread, head and track sread = 1; // the boot sector has already been read int13/AH=00h(DL=0); // reset FDC BX = 0x0200; // read bsetup right after bbootsect (512 bytes) do { next_step: /* to prevent cylinder crossing reading, * calculate how many sectors to read this time */ uint16 pushw_ax = AX = MIN(sectors-sread, setup_sects); no_cyl_crossing: read_track(AL, ES:BX); // AX is not modified // set ES:BX, sread, head and track for next read_track() set_next(AX); setup_sects -= pushw_ax; // rest - for next step } while (setup_sects); }
SI is set to the address of sread to index variables sread, head and track, as they are contiguous in memory. Check Section 3.6, “Read Disk” for read_track() and set_next() details.
bvmlinux (head.o, misc.o, piggy.o) will be loaded at 0x100000, syssize*16 bytes.
/////////////////////////////////////////////////////////////////////////////// // load vmlinux/bvmlinux (head.o, misc.o, piggy.o) { read_it(ES=SYSSEG); kill_motor(); // turn off floppy drive motor print_nl(); // print CR LF }
Check Section 3.6, “Read Disk” for read_it() details. If we are booting up zImage, vmlinux is loaded at 0x10000 (SYSSEG:0).
bzImage (bbootsect, bsetup, bvmlinux) is in the memory as a whole now.
/////////////////////////////////////////////////////////////////////////////// // check which root-device to use and jump to setup.S int root_dev; // overwritten by tools/build { if (!root_dev) { switch (sectors) { case 15: root_dev = 0x0208; // /dev/ps0 - 1.2Mb break; case 18: root_dev = 0x021C; // /dev/PS0 - 1.44Mb break; case 36: root_dev = 0x0220; // /dev/fd0H2880 - 2.88Mb break; default: root_dev = 0x0200; // /dev/fd0 - auto detect break; } } // jump to the setup-routine loaded directly after the bootblock goto SETUPSEG:0; }
It passes control to bsetup. See linux/arch/i386/boot/setup.S:start in Section 4, “linux/arch/i386/boot/setup.S”.
The following functions are used to load bsetup and bvmlinux from disk. Note that syssize has been changed by tools/build in Section 2.6, “linux/arch/i386/tools/build.c” too.
sread: .word 0 # sectors read of current track head: .word 0 # current head track: .word 0 # current track /////////////////////////////////////////////////////////////////////////////// // load the system image at address SYSSEG:0 read_it(ES=SYSSEG) int syssize; /* system size in 16-bytes, * overwritten by tools/build */ { if (ES & 0x0fff) die; // not 64KB aligned BX = 0; for (;;) { rp_read: #ifdef __BIG_KERNEL__ bootsect_helper(ES:BX); /* INITSEG:0220==SETUPSEG:0020 is bootsect_kludge, * which contains pointer SETUPSEG:bootsect_helper(). * This function initializes some data structures * when it is called for the first time, * and moves SYSSEG:0 to 0x100000, 64KB each time, * in the following calls. * See Section 3.7, “Bootsect Helper”. */ #else AX = ES - SYSSEG + ( BX >> 4); // how many 16-bytes read #endif if (AX > syssize) return; // everything loaded ok1_read: /* Get proper AL (sectors to read) for this time * to prevent cylinder crossing reading and BX overflow. */ AX = sectors - sread; CX = BX + (AX << 9); // 1 sector = 2^9 bytes if (CX overflow && CX!=0) { // > 64KB AX = (-BX) >> 9; } ok2_read: read_track(AL, ES:BX); set_next(AX); } } /////////////////////////////////////////////////////////////////////////////// // read disk with parameters (sread, track, head) read_track(AL sectors, ES:BX destination) { for (;;) { printf("."); // int10/AH=0Eh: VIDEO - TELETYPE OUTPUT // set CX, DX according to (sread, track, head) DX = track; CX = sread + 1; CH = DL; DX = head; DH = DL; DX &= 0x0100; int13/AH=02h(AL, ES:BX, CX, DX); // int13/AH=02h: DISK - READ SECTOR(S) INTO MEMORY if (read disk success) return; // "addw $8, %sp" is to cancel previous 4 "pushw" operations. bad_rt: print_all(); // print error code, AX, BX, CX and DX int13/AH=00h(DL=0); // reset FDC } } /////////////////////////////////////////////////////////////////////////////// // set ES:BX, sread, head and track for next read_track() set_next(AX sectors_read) { CX = AX; // sectors read AX += sread; if (AX==sectors) { head = 1 ^ head; // flap head between 0 and 1 if (head==0) track++; ok4_set: AX = 0; } ok3_set: sread = AX; BX += CX && 9; if (BX overflow) { // > 64KB ES += 0x1000; BX = 0; } set_next_fn: }
setup.S:bootsect_helper() is only used by bootsect.S:read_it().
Because bbootsect and bsetup
are linked separately, they use offsets relative to
their own code/data segments.
We have to "call far" (lcall) for bootsect_helper()
in different segment, and it must "return far" (lret) then.
This results in CS change in calling, which makes CS!=DS, and
we have to use segment modifier to specify variables in
setup.S
.
/////////////////////////////////////////////////////////////////////////////// // called by bootsect loader when loading bzImage bootsect_helper(ES:BX) bootsect_es = 0; // defined in setup.S type_of_loader = 0; // defined in setup.S { if (!bootsect_es) { // called for the first time type_of_loader = 0x20; // bootsect-loader, version 0 AX = ES >> 4; *(byte*)(&bootsect_src_base+2) = AH; bootsect_es = ES; AX = ES - SYSSEG; return; } bootsect_second: if (!BX) { // 64KB full // move from SYSSEG:0 to destination, 64KB each time int15/AH=87h(CX=0x8000, ES:SI=CS:bootsect_gdt); // int15/AH=87h: SYSTEM - COPY EXTENDED MEMORY if (failed to copy) { bootsect_panic() { prtstr("INT15 refuses to access high mem, " "giving up."); bootsect_panic_loop: goto bootsect_panic_loop; // never return } } ES = bootsect_es; // reset ES to always point to 0x10000 *(byte*)(&bootsect_dst_base+2)++; } bootsect_ex: // have the number of moved frames (16-bytes) in AX AH = *(byte*)(&bootsect_dst_base+2) << 4; AL = 0; } /////////////////////////////////////////////////////////////////////////////// // data used by bootsect_helper() bootsect_gdt: .word 0, 0, 0, 0 .word 0, 0, 0, 0 bootsect_src: .word 0xffff bootsect_src_base: .byte 0x00, 0x00, 0x01 # base = 0x010000 .byte 0x93 # typbyte .word 0 # limit16,base24 =0 bootsect_dst: .word 0xffff bootsect_dst_base: .byte 0x00, 0x00, 0x10 # base = 0x100000 .byte 0x93 # typbyte .word 0 # limit16,base24 =0 .word 0, 0, 0, 0 # BIOS CS .word 0, 0, 0, 0 # BIOS DS bootsect_es: .word 0 bootsect_panic_mess: .string "INT15 refuses to access high mem, giving up."
Note that type_of_loader value is changed. It will be referenced in Section 4.3, “Check Loader Type”.
The rest are supporting functions, variables and part of "real-mode kernel header". Note that data is in .text segment as code, thus it can be properly initialized when loaded.
/////////////////////////////////////////////////////////////////////////////// // some small functions print_all(); /* print error code, AX, BX, CX and DX */ print_nl(); /* print CR LF */ print_hex(); /* print the word pointed to by SS:BP in hexadecimal */ kill_motor() /* turn off floppy drive motor */ { #if 1 int13/AH=00h(DL=0); // reset FDC #else outb(0, 0x3F2); // outb(val, port) #endif } /////////////////////////////////////////////////////////////////////////////// sectors: .word 0 disksizes: .byte 36, 18, 15, 9 msg1: .byte 13, 10 .ascii "Loading"
Bootsect trailer, which is a part of "real-mode kernel header", begins at offset 497.
.org 497 setup_sects: .byte SETUPSECS // overwritten by tools/build root_flags: .word ROOT_RDONLY syssize: .word SYSSIZE // overwritten by tools/build swap_dev: .word SWAP_DEV ram_size: .word RAMDISK vid_mode: .word SVGA_MODE root_dev: .word ROOT_DEV // overwritten by tools/build boot_flag: .word 0xAA55
This "header" must conform to the layout pattern in
linux/Documentation/i386/boot.txt
:
Offset Proto Name Meaning /Size 01F1/1 ALL setup_sects The size of the setup in sectors 01F2/2 ALL root_flags If set, the root is mounted readonly 01F4/2 ALL syssize DO NOT USE - for bootsect.S use only 01F6/2 ALL swap_dev DO NOT USE - obsolete 01F8/2 ALL ram_size DO NOT USE - for bootsect.S use only 01FA/2 ALL vid_mode Video mode control 01FC/2 ALL root_dev Default root device number 01FE/2 ALL boot_flag 0xAA55 magic number
THE LINUX/I386 BOOT PROTOCOL:
linux/Documentation/i386/boot.txt
As <IA-32 Intel Architecture Software Developer's Manual> is widely referenced in this document, I will call it "IA-32 Manual" for short.
setup.S
is responsible for getting the system data
from the BIOS and putting them into appropriate places in system memory.
Other boot loaders, like
GNU GRUB and
LILO,
can load bzImage too.
Such boot loaders should load bzImage into memory
and setup "real-mode kernel header",
esp. type_of_loader, then pass control
to bsetup directly.
setup.S
assumes:
bsetup or setup may not be
loaded at SETUPSEG:0, i.e. CS may not be equal to SETUPSEG
when control is passed to setup.S
;
The first 4 sectors of setup are loaded right after bootsect. The reset may be loaded at SYSSEG:0, preceding vmlinux; This assumption does not apply to bsetup.
/* Signature words to ensure LILO loaded us right */ #define SIG1 0xAA55 #define SIG2 0x5A5A INITSEG = DEF_INITSEG # 0x9000, we move boot here, out of the way SYSSEG = DEF_SYSSEG # 0x1000, system loaded at 0x10000 (65536). SETUPSEG = DEF_SETUPSEG # 0x9020, this is the current segment # ... and the former contents of CS DELTA_INITSEG = SETUPSEG - INITSEG # 0x0020 .code16 .text /////////////////////////////////////////////////////////////////////////////// start: { goto trampoline(); // skip the following header } # This is the setup header, and it must start at %cs:2 (old 0x9020:2) .ascii "HdrS" # header signature .word 0x0203 # header version number (>= 0x0105) # or else old loadlin-1.5 will fail) realmode_swtch: .word 0, 0 # default_switch, SETUPSEG start_sys_seg: .word SYSSEG .word kernel_version # pointing to kernel version string # above section of header is compatible # with loadlin-1.5 (header v1.5). Don't # change it. // kernel_version defined below type_of_loader: .byte 0 # = 0, old one (LILO, Loadlin, # Bootlin, SYSLX, bootsect...) # See Documentation/i386/boot.txt for # assigned ids # flags, unused bits must be zero (RFU) bit within loadflags loadflags: LOADED_HIGH = 1 # If set, the kernel is loaded high CAN_USE_HEAP = 0x80 # If set, the loader also has set # heap_end_ptr to tell how much # space behind setup.S can be used for # heap purposes. # Only the loader knows what is free #ifndef __BIG_KERNEL__ .byte 0 #else .byte LOADED_HIGH #endif setup_move_size: .word 0x8000 # size to move, when setup is not # loaded at 0x90000. We will move setup # to 0x90000 then just before jumping # into the kernel. However, only the # loader knows how much data behind # us also needs to be loaded. code32_start: # here loaders can put a different # start address for 32-bit code. #ifndef __BIG_KERNEL__ .long 0x1000 # 0x1000 = default for zImage #else .long 0x100000 # 0x100000 = default for big kernel #endif ramdisk_image: .long 0 # address of loaded ramdisk image # Here the loader puts the 32-bit # address where it loaded the image. # This only will be read by the kernel. ramdisk_size: .long 0 # its size in bytes bootsect_kludge: .word bootsect_helper, SETUPSEG heap_end_ptr: .word modelist+1024 # (Header version 0x0201 or later) # space from here (exclusive) down to # end of setup code can be used by setup # for local heap purposes. // modelist is at the end of .text section pad1: .word 0 cmd_line_ptr: .long 0 # (Header version 0x0202 or later) # If nonzero, a 32-bit pointer # to the kernel command line. # The command line should be # located between the start of # setup and the end of low # memory (0xa0000), or it may # get overwritten before it # gets read. If this field is # used, there is no longer # anything magical about the # 0x90000 segment; the setup # can be located anywhere in # low memory 0x10000 or higher. ramdisk_max: .long __MAXMEM-1 # (Header version 0x0203 or later) # The highest safe address for # the contents of an initrd
The __MAXMEM definition in
linux/asm-i386/page.h
:
/* * A __PAGE_OFFSET of 0xC0000000 means that the kernel has * a virtual address space of one gigabyte, which limits the * amount of physical memory you can use to about 950MB. */ #define __PAGE_OFFSET (0xC0000000) /* * This much address space is reserved for vmalloc() and iomap() * as well as fixmap mappings. */ #define __VMALLOC_RESERVE (128 << 20) #define __MAXMEM (-__PAGE_OFFSET-__VMALLOC_RESERVE)
It gives __MAXMEM = 1G - 128M.
The setup header must follow some layout pattern.
Refer to linux/Documentation/i386/boot.txt
:
Offset Proto Name Meaning /Size 0200/2 2.00+ jump Jump instruction 0202/4 2.00+ header Magic signature "HdrS" 0206/2 2.00+ version Boot protocol version supported 0208/4 2.00+ realmode_swtch Boot loader hook 020C/2 2.00+ start_sys The load-low segment (0x1000) (obsolete) 020E/2 2.00+ kernel_version Pointer to kernel version string 0210/1 2.00+ type_of_loader Boot loader identifier 0211/1 2.00+ loadflags Boot protocol option flags 0212/2 2.00+ setup_move_size Move to high memory size (used with hooks) 0214/4 2.00+ code32_start Boot loader hook 0218/4 2.00+ ramdisk_image initrd load address (set by boot loader) 021C/4 2.00+ ramdisk_size initrd size (set by boot loader) 0220/4 2.00+ bootsect_kludge DO NOT USE - for bootsect.S use only 0224/2 2.01+ heap_end_ptr Free memory after setup end 0226/2 N/A pad1 Unused 0228/4 2.02+ cmd_line_ptr 32-bit pointer to the kernel command line 022C/4 2.03+ initrd_addr_max Highest legal initrd address
As setup code may not be contiguous, we should check code integrity first.
/////////////////////////////////////////////////////////////////////////////// trampoline() { start_of_setup(); // never return .space 1024; } /////////////////////////////////////////////////////////////////////////////// // check signature to see if all code loaded start_of_setup() { // Bootlin depends on this being done early, check bootlin:technic.doc int13/AH=15h(AL=0, DL=0x81); // int13/AH=15h: DISK - GET DISK TYPE #ifdef SAFE_RESET_DISK_CONTROLLER int13/AH=0(AL=0, DL=0x80); // int13/AH=00h: DISK - RESET DISK SYSTEM #endif DS = CS; // check signature at end of setup if (setup_sig1!=SIG1 || setup_sig2!=SIG2) { goto bad_sig; } goto goodsig1; } /////////////////////////////////////////////////////////////////////////////// // some small functions prtstr(); /* print asciiz string at DS:SI */ prtsp2(); /* print double space */ prtspc(); /* print single space */ prtchr(); /* print ascii in AL */ beep(); /* print CTRL-G, i.e. beep */
Signature is checked to verify code integrity.
If signature is not found, the rest setup code may precede vmlinux at SYSSEG:0.
no_sig_mess: .string "No setup signature found ..." goodsig1: goto goodsig; // make near jump /////////////////////////////////////////////////////////////////////////////// // move the rest setup code from SYSSEG:0 to CS:0800 bad_sig() DELTA_INITSEG = 0x0020 (= SETUPSEG - INITSEG) SYSSEG = 0x1000 word start_sys_seg = SYSSEG; // defined in setup header { DS = CS - DELTA_INITSEG; // aka INITSEG BX = (byte)(DS:[497]); // i.e. setup_sects // first 4 sectors already loaded CX = (BX - 4) << 8; // rest code in word (2-bytes) start_sys_seg = (CX >> 3) + SYSSEG; // real system code start move SYSSEG:0 to CS:0800 (CX*2 bytes); if (setup_sig1!=SIG1 || setup_sig2!=SIG2) { no_sig: prtstr("No setup signature found ..."); no_sig_loop: hlt; goto no_sig_loop; } }
"hlt" instruction stops instruction execution and places the processor in halt state. The processor generates a special bus cycle to indicate that halt mode has been entered. When an enabled interrupt (including NMI) is issued, the processor will resume execution after the "hlt" instruction, and the instruction pointer (CS:EIP), pointing to the instruction following the "hlt", will be saved to stack before the interrupt handler is called. Thus we need a "jmp" instruction after the "hlt" to put the processor back to halt state again.
The setup code has been moved to correct place. Variable start_sys_seg points to where real system code starts. If "bad_sig" does not happen, start_sys_seg remains SYSSEG.
Check if the loader is compatible with the image.
/////////////////////////////////////////////////////////////////////////////// good_sig() char loadflags; // in setup header char type_of_loader; // in setup header LOADHIGH = 1 { DS = CS - DELTA_INITSEG; // aka INITSEG if ( (loadflags & LOADHIGH) && !type_of_loader ) { // Nope, old loader tries to load big-kernel prtstr("Wrong loader, giving up..."); goto no_sig_loop; // defined above in bad_sig() } } loader_panic_mess: .string "Wrong loader, giving up..."
Note that type_of_loader has been changed to 0x20 by bootsect_helper() when it loads bvmlinux.
Try three different memory detection schemes to get the extended memory size (above 1M) in KB.
First, try e820h, which lets us assemble a memory map; then try e801h, which returns a 32-bit memory size; and finally 88h, which returns 0-64M.
/////////////////////////////////////////////////////////////////////////////// // get memory size loader_ok() E820NR = 0x1E8 E820MAP = 0x2D0 { // when entering this function, DS = CS-DELTA_INITSEG, aka INITSEG (long)DS:[0x1E0] = 0; #ifndef STANDARD_MEMORY_BIOS_CALL (byte)DS:[0x1E8] = 0; // E820NR /* method E820H: see ACPI spec * the memory map from hell. e820h returns memory classified into * a whole bunch of different types, and allows memory holes and * everything. We scan through this memory map and build a list * of the first 32 memory areas, which we return at [E820MAP]. */ meme820: EBX = 0; DI = 0x02D0; // E820MAP do { jmpe820: int15/EAX=E820h(EDX='SMAP', EBX, ECX=20, ES:DI=DS:DI); // int15/AX=E820h: GET SYSTEM MEMORY MAP if (failed || 'SMAP'!=EAX) break; // if (1!=DS:[DI+16]) continue; // not usable good820: if (DS:[1E8]>=32) break; // entry# > E820MAX DS:[0x1E8]++; // entry# ++; DI += 20; // adjust buffer for next again820: } while (!EBX) // not finished bail820: /* method E801H: * memory size is in 1k chunksizes, to avoid confusing loadlin. * we store the 0xe801 memory size in a completely different place, * because it will most likely be longer than 16 bits. * (use 1e0 because that's what Larry Augustine uses in his * alternative new memory detection scheme, and it's sensible * to write everything into the same place.) */ meme801: stc; // to work around buggy BIOSes CX = DX = 0; int15/AX=E801h; /* int15/AX=E801h: GET MEMORY SIZE FOR >64M CONFIGURATIONS * AX = extended memory between 1M and 16M, in K (max 3C00 = 15MB) * BX = extended memory above 16M, in 64K blocks * CX = configured memory 1M to 16M, in K * DX = configured memory above 16M, in 64K blocks */ if (failed) goto mem88; if (!CX && !DX) { CX = AX; DX = BX; } e801usecxdx: (long)DS:[0x1E0] = ((EDX & 0xFFFF) << 6) + (ECX & 0xFFFF); // in K #endif mem88: // old traditional method int15/AH=88h; /* int15/AH=88h: SYSTEM - GET EXTENDED MEMORY SIZE * AX = number of contiguous KB starting at absolute address 100000h */ DS:[2] = AX; }
Check hardware support, like keyboard, video adapter, hard disk, MCA bus and pointing device.
{ // set the keyboard repeat rate to the max int16/AX=0305h(BX=0); // int16/AH=03h: KEYBOARD - SET TYPEMATIC RATE AND DELAY /* Check for video adapter and its parameters and * allow the user to browse video modes. */ video(); // see video.S // get hd0 and hd1 data copy hd0 data (*int41) to CS-DELTA_INITSEG:0080 (16 bytes); // int41: SYSTEM DATA - HARD DISK 0 PARAMETER TABLE ADDRESS copy hd1 data (*int46) to CS-DELTA_INITSEG:0090 (16 bytes); // int46: SYSTEM DATA - HARD DISK 1 PARAMETER TABLE ADDRESS // check if hd1 exists int13/AH=15h(AL=0, DL=0x81); // int13/AH=15h: DISK - GET DISK TYPE if (failed || AH!=03h) { // AH==03h if it is a hard disk no_disk1: clear CS-DELTA_INITSEG:0090 (16 bytes); } is_disk1: // check for Micro Channel (MCA) bus CS-DELTA_INITSEG:[0xA0] = 0; // set table length to 0 int15/AH=C0h; /* int15/AH=C0h: SYSTEM - GET CONFIGURATION * ES:BX = ROM configuration table */ if (failed) goto no_mca; move ROM configuration table (ES:BX) to CS-DELTA_INITSEG:00A0; // CX = (table length<14)? CX:16; first 16 bytes only no_mca: // check for PS/2 pointing device CS-DELTA_INITSEG:[0x1FF] = 0; // default is no pointing device int11h(); // int11h: BIOS - GET EQUIPMENT LIST if (AL & 0x04) { // mouse installed DS:[0x1FF] = 0xAA; } }
Check BIOS APM support.
#if defined(CONFIG_APM) || defined(CONFIG_APM_MODULE) { DS:[0x40] = 0; // version = 0 means no APM BIOS int15/AX=5300h(BX=0); // int15/AX=5300h: Advanced Power Management v1.0+ - INSTALLATION CHECK if (failed || 'PM'!=BX || !(CX & 0x02)) goto done_apm_bios; // (CX & 0x02) means 32 bit is supported int15/AX=5304h(BX=0); // int15/AX=5304h: Advanced Power Management v1.0+ - DISCONNECT INTERFACE EBX = CX = DX = ESI = DI = 0; int15/AX=5303h(BX=0); /* int15/AX=5303h: Advanced Power Management v1.0+ * - CONNECT 32-BIT PROTMODE INTERFACE */ if (failed) { no_32_apm_bios: // I moved label no_32_apm_bios here DS:[0x4C] &= ~0x0002; // remove 32 bit support bit goto done_apm_bios; } DS:[0x42] = AX, 32-bit code segment base address; DS:[0x44] = EBX, offset of entry point; DS:[0x48] = CX, 16-bit code segment base address; DS:[0x4A] = DX, 16-bit data segment base address; DS:[0x4E] = ESI, APM BIOS code segment length; DS:[0x52] = DI, APM BIOS data segment length; int15/AX=5300h(BX=0); // check again // int15/AX=5300h: Advanced Power Management v1.0+ - INSTALLATION CHECK if (success && 'PM'==BX) { DS:[0x40] = AX, APM version; DS:[0x4C] = CX, APM flags; } else { apm_disconnect: int15/AX=5304h(BX=0); /* int15/AX=5304h: Advanced Power Management v1.0+ * - DISCONNECT INTERFACE */ } done_apm_bios: } #endif
// call mode switch { if (realmode_swtch) { realmode_swtch(); // mode switch hook } else { rmodeswtch_normal: default_switch() { cli; // no interrupts allowed outb(0x80, 0x70); // disable NMI } } rmodeswtch_end: } // relocate code if necessary { (long)code32 = code32_start; if (!(loadflags & LOADED_HIGH)) { // low loaded zImage // 0x0100 <= start_sys_seg < CS-DELTA_INITSEG do_move0: AX = 0x100; BP = CS - DELTA_INITSEG; // aka INITSEG BX = start_sys_seg; do_move: move system image from (start_sys_seg:0 .. CS-DELTA_INITSEG:0) to 0100:0; // move 0x1000 bytes each time } end_move:
Note that code32_start is initialized to
0x1000 for zImage, or
0x100000 for bzImage.
The code32 value will be used in passing control to
linux/arch/i386/boot/compressed/head.S
in
Section 4.9, “Switch to Protected Mode”.
If we boot up zImage, it relocates
vmlinux to 0100:0;
If we boot up bzImage,
bvmlinux remains at start_sys_seg:0.
The relocation address must match the "-Ttext" option in
linux/arch/i386/boot/compressed/Makefile
.
See Section 2.5, “linux/arch/i386/boot/compressed/Makefile”.
Then it will relocate code from CS-DELTA_INITSEG:0 (bbootsect and bsetup) to INITSEG:0, if necessary.
DS = CS; // aka SETUPSEG // Check whether we need to be downward compatible with version <=201 if (!cmd_line_ptr && 0x20!=type_of_loader && SETUPSEG!=CS) { cli; // as interrupt may use stack when we are moving // store new SS in DX AX = CS - DELTA_INITSEG; DX = SS; if (DX>=AX) { // stack frame will be moved together DX = DX + INITSEG - AX; // i.e. SS-CS+SETUPSEG } move_self_1: /* move CS-DELTA_INITSEG:0 to INITSEG:0 (setup_move_size bytes) * in two steps in order not to overwrite code on CS:IP * move up (src < dest) but downward ("std") */ move CS-DELTA_INITSEG:move_self_here+0x200 to INITSEG:move_self_here+0x200, setup_move_size-(move_self_here+0x200) bytes; // INITSEG:move_self_here+0x200 == SETUPSEG:move_self_here goto SETUPSEG:move_self_here; // CS=SETUPSEG now move_self_here: move CS-DELTA_INITSEG:0 to INITSEG:0, move_self_here+0x200 bytes; // I mean old CS before goto DS = SETUPSEG; SS = DX; } end_move_self: }
Note again, type_of_loader has been changed to 0x20 by bootsect_helper() when it loads bvmlinux.
For A20 problem and solution, refer to A20 - a pain from the past.
A20_TEST_LOOPS = 32 # Iterations per wait A20_ENABLE_LOOPS = 255 # Total loops to try { #if defined(CONFIG_MELAN) // Enable A20. AMD Elan bug fix. outb(0x02, 0x92); // outb(val, port) a20_elan_wait: while (!a20_test()); // test not passed goto a20_done; #endif a20_try_loop: // First, see if we are on a system with no A20 gate. a20_none: if (a20_test()) goto a20_done; // test passed // Next, try the BIOS (INT 0x15, AX=0x2401) a20_bios: int15/AX=2401h; // Int15/AX=2401h: SYSTEM - later PS/2s - ENABLE A20 GATE if (a20_test()) goto a20_done; // test passed // Try enabling A20 through the keyboard controller a20_kbc: empty_8042(); if (a20_test()) goto a20_done; // test again in case BIOS delayed outb(0xD1, 0x64); // command write empty_8042(); outb(0xDF, 0x60); // A20 on empty_8042(); // wait until a20 really *is* enabled a20_kbc_wait: CX = 0; a20_kbc_wait_loop: do { if (a20_test()) goto a20_done; // test passed } while (--CX) // Final attempt: use "configuration port A" outb((inb(0x92) | 0x02) & 0xFE, 0x92); // wait for configuration port A to take effect a20_fast_wait: CX = 0; a20_fast_wait_loop: do { if (a20_test()) goto a20_done; // test passed } while (--CX) // A20 is still not responding. Try frobbing it again. if (--a20_tries) goto a20_try_loop; prtstr("linux: fatal error: A20 gate not responding!"); a20_die: hlt; goto a20_die; } a20_tries: .byte A20_ENABLE_LOOPS // i.e. 255 a20_err_msg: .ascii "linux: fatal error: A20 gate not responding!" .byte 13, 10, 0
For I/O port operations, take a look at related reference materials in Section 4.11, “Reference”.
To ensure code compatibility with all 32-bit IA-32 processors, perform the following steps to switch to protected mode:
Prepare GDT with a null descriptor in the first GDT entry, one code segment descriptor and one data segment descriptor;
Disable interrupts, including maskable hardware interrupts and NMI;
Load the base address and limit of the GDT to GDTR register, using "lgdt" instruction;
Set PE flag in CR0 register, using "mov cr0" (Intel 386 and up) or "lmsw" instruction (for compatibility with Intel 286);
Immediately execute a far "jmp" or a far "call" instruction.
The stack can be placed in a normal read/write data segment, so no dedicated descriptor is required.
a20_done: { lidt idt_48; // load idt with 0, 0; // convert DS:gdt to a linear ptr *(long*)(gdt_48+2) = DS << 4 + &gdt; lgdt gdt_48; // reset coprocessor outb(0, 0xF0); delay(); outb(0, 0xF1); delay(); // reprogram the interrupts outb(0xFF, 0xA1); // mask all interrupts delay(); outb(0xFB, 0x21); // mask all irq's but irq2 which is cascaded // protected mode! AX = 1; lmsw ax; // machine status word, bit 0 thru 15 of CR0 // only affects PE, MP, EM & TS flags goto flush_instr; flush_instr: BX = 0; // flag to indicate a boot ESI = (CS - DELTA_INITSEG) << 4; // pointer to real-mode code /* NOTE: For high loaded big kernels we need a * jmpi 0x100000,__KERNEL_CS * * but we yet haven't reloaded the CS register, so the default size * of the target offset still is 16 bit. * However, using an operand prefix (0x66), the CPU will properly * take our 48 bit far pointer. (INTeL 80386 Programmer's Reference * Manual, Mixing 16-bit and 32-bit code, page 16-6) */ // goto __KERNEL_CS:[(uint32*)code32]; */ .byte 0x66, 0xea code32: .long 0x1000 // overwritten in Section 4.7, “Prepare for Protected Mode” .word __KERNEL_CS // segment 0x10 // see linux/arch/i386/boot/compressed/head.S:startup_32 }
The far "jmp" instruction (0xea) updates CS register. The contents of the remaining segment registers (DS, SS, ES, FS and GS) should be reloaded later. The operand-size prefix (0x66) is used to enforce "jmp" to be executed upon the 32-bit operand code32. For operand-size prefix details, check IA-32 Manual (Vol.1. Ch.3.6. Operand-size and Address-size Attributes, and Vol.3. Ch.17. Mixing 16-bit and 32-bit Code).
Control is passed to linux/arch/i386/boot/compressed/head.S:startup_32. For zImage, it is at address 0x1000; For bzImage, it is at 0x100000. See Section 5, “linux/arch/i386/boot/compressed/head.S”.
ESI points to the memory area of collected system data.
It is used to pass parameters from the 16-bit real mode code of the kernel
to the 32-bit part.
See linux/Documentation/i386/zero-page.txt
for details.
For mode switching details, refer to IA-32 Manual Vol.3. (Ch.9.8. Software Initialization for Protected-Mode Operation, Ch.9.9.1. Switching to Protected Mode, and Ch.17.4. Transferring Control Among Mixed-Size Code Segments).
The rest are supporting functions and variables.
/* macros created by linux/Makefile targets: * include/linux/compile.h and include/linux/version.h */ kernel_version: .ascii UTS_RELEASE .ascii " (" .ascii LINUX_COMPILE_BY .ascii "@" .ascii LINUX_COMPILE_HOST .ascii ") " .ascii UTS_VERSION .byte 0 /////////////////////////////////////////////////////////////////////////////// default_switch() { cli; outb(0x80, 0x70); } /* disable interrupts and NMI */ bootsect_helper(ES:BX); /* see Section 3.7, “Bootsect Helper” */ /////////////////////////////////////////////////////////////////////////////// a20_test() { FS = 0; GS = 0xFFFF; CX = A20_TEST_LOOPS; // i.e. 32 AX = FS:[0x200]; do { a20_test_wait: FS:[0x200] = ++AX; delay(); } while (AX==GS:[0x210] && --CX); return (AX!=GS[0x210]); // ZF==0 (i.e. NZ/NE, a20_test!=0) means test passed } /////////////////////////////////////////////////////////////////////////////// // check that the keyboard command queue is empty empty_8042() { int timeout = 100000; for (;;) { empty_8042_loop: if (!--timeout) return; delay(); inb(0x64, &AL); // 8042 status port if (AL & 1) { // has output delay(); inb(0x60, &AL); // read it no_output: } else if (!(AL & 2)) return; // no input either } } /////////////////////////////////////////////////////////////////////////////// // read the CMOS clock, return the seconds in AL, used in video.S gettime() { int1A/AH=02h(); /* int1A/AH=02h: TIME - GET REAL-TIME CLOCK TIME * DH = seconds in BCD */ AL = DH & 0x0F; AH = DH >> 4; aad; } /////////////////////////////////////////////////////////////////////////////// delay() { outb(AL, 0x80); } // needed after doing I/O // Descriptor table gdt: .word 0, 0, 0, 0 # dummy .word 0, 0, 0, 0 # unused // segment 0x10, __KERNEL_CS .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb) .word 0 # base address = 0 .word 0x9A00 # code read/exec .word 0x00CF # granularity = 4096, 386 # (+5th nibble of limit) // segment 0x18, __KERNEL_DS .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb) .word 0 # base address = 0 .word 0x9200 # data read/write .word 0x00CF # granularity = 4096, 386 # (+5th nibble of limit) idt_48: .word 0 # idt limit = 0 .word 0, 0 # idt base = 0L /* [gdt_48] should be 0x0800 (2048) to match the comment, * like what Linux 2.2.22 does. */ gdt_48: .word 0x8000 # gdt limit=2048, # 256 GDT entries .word 0, 0 # gdt base (filled in later) #include "video.S" // signature at the end of setup.S: { setup_sig1: .word SIG1 // 0xAA55 setup_sig2: .word SIG2 // 0x5A5A modelist: }
Video setup and detection code in video.S
:
ASK_VGA = 0xFFFD // defined in linux/include/asm-i386/boot.h /////////////////////////////////////////////////////////////////////////////// video() { pushw DS; // use different segments FS = DS; DS = ES = CS; GS = 0; cld; basic_detect(); // basic adapter type testing (EGA/VGA/MDA/CGA) #ifdef CONFIG_VIDEO_SELECT if (FS:[0x01FA]!=ASK_VGA) { // user selected video mode mode_set(); if (failed) { prtstr("You passed an undefined mode number.\n"); mode_menu(); } } else { vid2: mode_menu(); } vid1: #ifdef CONFIG_VIDEO_RETAIN restore_screen(); // restore screen contents #endif /* CONFIG_VIDEO_RETAIN */ #endif /* CONFIG_VIDEO_SELECT */ mode_params(); // store mode parameters popw ds; // restore original DS }
/* TODO: video() details */
Real-time Programming Appendix A: Complete I/O Port List
Summary of empty_zero_page layout (kernel point of view):
linux/Documentation/i386/zero-page.txt
We are in bvmlinux now!
With the help of misc.c:decompress_kernel(),
we are going to decompress piggy.o
to get the resident kernel image linux/vmlinux
.
This file is of pure 32-bit startup code. Unlike previous two files, it has no ".code16" statement in the source file. Refer to Using as: Writing 16-bit Code for details.
The segment base addresses in segment descriptors (which correspond to segment selector __KERNEL_CS and __KERNEL_DS) are equal to 0; therefore, the logical address offset (in segment:offset format) will be equal to its linear address if either of these segment selectors is used. For zImage, CS:EIP is at logical address 10:1000 (linear address 0x1000) now; for bzImage, 10:100000 (linear address 0x100000).
As paging is not enabled, linear address is identical to physical address. Check IA-32 Manual (Vol.1. Ch.3.3. Memory Organization, and Vol.3. Ch.3. Protected-Mode Memory Management) and Linux Device Drivers: Memory Management in Linux for address issue.
It comes from setup.S
that BX=0 and
ESI=INITSEG<<4.
.text /////////////////////////////////////////////////////////////////////////////// startup_32() { cld; cli; DS = ES = FS = GS = __KERNEL_DS; SS:ESP = *stack_start; // end of user_stack[], defined in misc.c // all segment registers are reloaded after protected mode is enabled // check that A20 really IS enabled EAX = 0; do { 1: DS:[0] = ++EAX; } while (DS:[0x100000]==EAX); EFLAGS = 0; clear BSS; // from _edata to _end struct moveparams mp; // subl $16,%esp if (!decompress_kernel(&mp, ESI)) { // return value in AX restore ESI from stack; EBX = 0; goto __KERNEL_CS:100000; // see linux/arch/i386/kernel/head.S:startup_32 } /* * We come here, if we were loaded high. * We need to move the move-in-place routine down to 0x1000 * and then start it with the buffer addresses in registers, * which we got from the stack. */ 3: move move_rountine_start..move_routine_end to 0x1000; // move_routine_start & move_routine_end are defined below // prepare move_routine_start() parameters EBX = real mode pointer; // ESI value passed from setup.S ESI = mp.low_buffer_start; ECX = mp.lcount; EDX = mp.high_buffer_star; EAX = mp.hcount; EDI = 0x100000; cli; // make sure we don't get interrupted goto __KERNEL_CS:1000; // move_routine_start(); } /* Routine (template) for moving the decompressed kernel in place, * if we were high loaded. This _must_ PIC-code ! */ /////////////////////////////////////////////////////////////////////////////// move_routine_start() { move mp.low_buffer_start to 0x100000, mp.lcount bytes, in two steps: (lcount >> 2) words + (lcount & 3) bytes; move/append mp.high_buffer_start, ((mp.hcount + 3) >> 2) words // 1 word == 4 bytes, as I mean 32-bit code/data. ESI = EBX; // real mode pointer, as that from setup.S EBX = 0; goto __KERNEL_CS:100000; // see linux/arch/i386/kernel/head.S:startup_32() move_routine_end: }
For the meaning of "je 1b" and "jnz 3f", refer to Using as: Local Symbol Names.
Didn't find _edata and _end definitions? No problem, they are defined in the "internal linker script". Without -T (--script=) option specified, ld uses this builtin script to link compressed/bvmlinux. Use "ld --verbose" to display this script, or check Appendix B. Internal Linker Script.
Refer to Using LD, the GNU linker: Command Line Options for -T (--script=), -L (--library-path=) and --verbose option description. "man ld" and "info ld" may help too.
piggy.o has been unzipped and control is passed to __KERNEL_CS:100000, i.e. linux/arch/i386/kernel/head.S:startup_32(). See Section 6, “linux/arch/i386/kernel/head.S”.
#define LOW_BUFFER_START 0x2000 #define LOW_BUFFER_MAX 0x90000 #define HEAP_SIZE 0x3000 /////////////////////////////////////////////////////////////////////////////// asmlinkage int decompress_kernel(struct moveparams *mv, void *rmode) |-- setup real_mode(=rmode), vidmem, vidport, lines and cols; |-- if (is_zImage) setup_normal_output_buffer() { | output_data = 0x100000; | free_mem_end_ptr = real_mode; | } else (is_bzImage) setup_output_buffer_if_we_run_high(mv) { | output_data = LOW_BUFFER_START; | low_buffer_end = MIN(real_mode, LOW_BUFFER_MAX) & ~0xfff; | low_buffer_size = low_buffer_end - LOW_BUFFER_START; | free_mem_end_ptr = &end + HEAP_SIZE; | // get mv->low_buffer_start and mv->high_buffer_start | mv->low_buffer_start = LOW_BUFFER_START; | /* To make this program work, we must have | * high_buffer_start > &end+HEAP_SIZE; | * As we will move low_buffer from LOW_BUFFER_START to 0x100000 | * (max low_buffer_size bytes) finally, we should have | * high_buffer_start > 0x100000+low_buffer_size; */ | mv->high_buffer_start = high_buffer_start | = MAX(&end+HEAP_SIZE, 0x100000+low_buffer_size); | mv->hcount = 0 if (0x100000+low_buffer_size > &end+HEAP_SIZE); | = -1 if (0x100000+low_buffer_size <= &end+HEAP_SIZE); | /* mv->hcount==0 : we need not move high_buffer later, | * as it is already at 0x100000+low_buffer_size. | * Used by close_output_buffer_if_we_run_high() below. */ | } |-- makecrc(); // create crc_32_tab[] | puts("Uncompressing Linux... "); |-- gunzip(); | puts("Ok, booting the kernel.\n"); |-- if (is_bzImage) close_output_buffer_if_we_run_high(mv) { | // get mv->lcount and mv->hcount | if (bytes_out > low_buffer_size) { | mv->lcount = low_buffer_size; | if (mv->hcount) | mv->hcount = bytes_out - low_buffer_size; | } else { | mv->lcount = bytes_out; | mv->hcount = 0; | } | } `-- return is_bzImage; // return value in AX
end is defined in the "internal linker script" too.
decompress_kernel() has an "asmlinkage" modifer.
In linux/include/linux/linkage.h
:
#ifdef __cplusplus #define CPP_ASMLINKAGE extern "C" #else #define CPP_ASMLINKAGE #endif #if defined __i386__ #define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0))) #elif defined __ia64__ #define asmlinkage CPP_ASMLINKAGE __attribute__((syscall_linkage)) #else #define asmlinkage CPP_ASMLINKAGE #endif
Macro "asmlinkage" will force the compiler to pass all function arguments on the stack, in case some optimization method may try to change this convention. Check Using the GNU Compiler Collection (GCC): Declaring Attributes of Functions (regparm) and Kernelnewbies FAQ: What is asmlinkage for more details.
decompress_kernel() calls
gunzip() -> inflate(), which are defined in
linux/lib/inflate.c
,
to decompress resident kernel image to
low buffer (pointed by output_data) and
high buffer (pointed by high_buffer_start, for
bzImage only).
The gzip file format is specified in RFC 1952.
Table 6. gzip file format
Component | Meaning | Byte | Comment |
---|---|---|---|
ID1 | IDentification 1 | 1 | 31 (0x1f, \037) |
ID2 | IDentification 2 | 1 | 139 (0x8b, \213) [a] |
CM | Compression Method | 1 | 8 - denotes the "deflate" compression method |
FLG | FLaGs | 1 | 0 for most cases |
MTIME | Modification TIME | 4 | modification time of the original file |
XFL | eXtra FLags | 1 | 2 - compressor used maximum compression, slowest algorithm [b] |
OS | Operating System | 1 | 3 - Unix |
extra fields | - | - | variable length, field indicated by FLG [c] |
compressed blocks | - | - | variable length |
CRC32 | - | 4 | CRC value of the uncompressed data |
ISIZE | Input SIZE | 4 | the size of the uncompressed input data modulo 2^32 |
[a] ID2 value can be 158 (0x9e, \236) for gzip 0.5; [b] XFL value 4 - compressor used fastest algorithm; [c] FLG bit 0, FTEXT, does not indicate any "extra field". |
We can use this file format knowledge to find out
the beginning of gzipped linux/vmlinux
.
[root@localhost boot]# hexdump -C /boot/vmlinuz-2.4.20-28.9 | grep '1f 8b 08 00' 00004c50 1f 8b 08 00 01 f6 e1 3f 02 03 ec 5d 7d 74 14 55 |.......?...]}t.U| [root@localhost boot]# hexdump -C /boot/vmlinuz-2.4.20-28.9 -s 0x4c40 -n 64 00004c40 00 80 0b 00 00 fc 21 00 68 00 00 00 1e 01 11 00 |......!.h.......| 00004c50 1f 8b 08 00 01 f6 e1 3f 02 03 ec 5d 7d 74 14 55 |.......?...]}t.U| 00004c60 96 7f d5 a9 d0 1d 4d ac 56 93 35 ac 01 3a 9c 6a |......M.V.5..:.j| 00004c70 4d 46 5c d3 7b f8 48 36 c9 6c 84 f0 25 88 20 9f |MF\.{.H6.l..%. .| 00004c80 [root@localhost boot]# hexdump -C /boot/vmlinuz-2.4.20-28.9 | tail -n 4 00114d40 bd 77 66 da ce 6f 3d d6 33 5c 14 a2 9f 7e fa e9 |.wf..o=.3\...~..| 00114d50 a7 9f 7e fa ff 57 3f 00 00 00 00 00 d8 bc ab ea |..~..W?.........| 00114d60 44 5d 76 d1 fd 03 33 58 c2 f0 00 51 27 00 |D]v...3X...Q'.| 00114d6e
We can see that the gzipped file begins at 0x4c50 in the above example.
The four bytes before "1f 8b 08 00" is input_len
(0x0011011e, in little endian), and 0x4c50+0x0011011e=0x114d6e equals to
the size of bzImage
(/boot/vmlinuz-2.4.20-28.9
).
static uch *inbuf; /* input buffer */ static unsigned insize = 0; /* valid bytes in inbuf */ static unsigned inptr = 0; /* index of next byte to be processed in inbuf */ /////////////////////////////////////////////////////////////////////////////// static int gunzip(void) { Check input buffer for {ID1, ID2, CM}, must be {0x1f, 0x8b, 0x08} (normal case), or {0x1f, 0x9e, 0x08} (for gzip 0.5); Check FLG (flag byte), must not set bit 1, 5, 6 and 7; Ignore {MTIME, XFL, OS}; Handle optional structures, which correspond to FLG bit 2, 3 and 4; inflate(); // handle compressed blocks Validate {CRC32, ISIZE}; }
When get_byte(), defined in
linux/arch/i386/boot/compressed/misc.c
,
is called for the first time,
it calls fill_inbuf() to setup input buffer
inbuf=input_data and
insize=input_len.
Symbol input_data and
input_len are defined in
piggy.o linker script.
See Section 2.5, “linux/arch/i386/boot/compressed/Makefile”.
// some important definitions in misc.c #define WSIZE 0x8000 /* Window size must be at least 32k, * and a power of two */ static uch window[WSIZE]; /* Sliding window buffer */ static unsigned outcnt = 0; /* bytes in output buffer */ // linux/lib/inflate.c #define wp outcnt #define flush_output(w) (wp=(w),flush_window()) STATIC unsigned long bb; /* bit buffer */ STATIC unsigned bk; /* bits in bit buffer */ STATIC unsigned hufts; /* track memory usage */ static long free_mem_ptr = (long)&end; /////////////////////////////////////////////////////////////////////////////// STATIC int inflate() { int e; /* last block flag */ int r; /* result code */ unsigned h; /* maximum struct huft's malloc'ed */ void *ptr; wp = bb = bk = 0; // inflate compressed blocks one by one do { hufts = 0; gzip_mark() { ptr = free_mem_ptr; }; if ((r = inflate_block(&e)) != 0) { gzip_release() { free_mem_ptr = ptr; }; return r; } gzip_release() { free_mem_ptr = ptr; }; if (hufts > h) h = hufts; } while (!e); /* Undo too much lookahead. The next read will be byte aligned so we * can discard unused bits in the last meaningful byte. */ while (bk >= 8) { bk -= 8; inptr--; } /* write the output window window[0..outcnt-1] to output_data, * update output_ptr/output_data, crc and bytes_out accordingly, and * reset outcnt to 0. */ flush_output(wp); /* return success */ return 0; }
free_mem_ptr is used in misc.c:malloc() for dynamic memory allocation. Before inflating each compressed block, gzip_mark() saves the value of free_mem_ptr; After inflation, gzip_release() will restore this value. This is how it "free()" the memory allocated in inflate_block().
Gzip uses Lempel-Ziv coding (LZ77) to compress files. The compressed data format is specified in RFC 1951. inflate_block() will inflate compressed blocks, which can be treated as a bit sequence.
The data structure of each compressed block is outlined below:
BFINAL (1 bit) 0 - not the last block 1 - the last block BTYPE (2 bits) 00 - no compression remaining bits until the byte boundary; LEN (2 bytes); NLEN (2 bytes, the one's complement of LEN); data (LEN bytes); 01 - compressed with fixed Huffman codes { literal (7-9 bits, represent code 0..287, excluding 256); // See RFC 1951, table in Paragraph 3.2.6. length (0-5 bits if literal > 256, represent length 3..258); // See RFC 1951, 1st alphabet table in Paragraph 3.2.5. data (of literal bytes if literal < 256); distance (5 plus 0-13 extra bits if literal == 257..285, represent distance 1..32768); /* See RFC 1951, 2nd alphabet table in Paragraph 3.2.5, * but statement in Paragraph 3.2.6. */ /* Move backward "distance" bytes in the output stream, * and copy "length" bytes */ }* // can be of multiple instances literal (7 bits, all 0, literal == 256, means end of block); 10 - compressed with dynamic Huffman codes HLIT (5 bits, # of Literal/Length codes - 257, 257-286); HDIST (5 bits, # of Distance codes - 1, 1-32); HCLEN (4 bits, # of Code Length codes - 4, 4 - 19); Code Length sequence ((HCLEN+4)*3 bits) /* The following two alphabet tables will be decoded using * the Huffman decoding table which is generated from * the preceeding Code Length sequence. */ Literal/Length alphabet (HLIT+257 codes) Distance alphabet (HDIST+1 codes) // Decoding tables will be built from these alphpabet tables. /* The following is similar to that of fixed Huffman codes portion, * except that they use different decoding tables. */ { literal/length (variable length, depending on Literal/Length alphabet); data (of literal bytes if literal < 256); distance (variable length if literal == 257..285, depending on Distance alphabet); }* // can be of multiple instances literal (literal value 256, which means end of block); 11 - reserved (error)
Note that data elements are packed into bytes starting from Least-Significant Bit (LSB) to Most-Significant Bit (MSB), while Huffman codes are packed starting with MSB. Also note that literal value 286-287 and distance codes 30-31 will never actually occur.
With the above data structure in mind and RFC 1951 by hand, it is not too hard to understand inflate_block(). Refer to related paragraphs in RFC 1951 for Huffman coding and alphabet table generation.
For more details, refer to linux/lib/inflate.c
,
gzip source code (many in-line comments) and related reference materials.
Resident kernel image linux/vmlinux
is in place finally!
It requires two inputs:
ESI, to indicate where the 16-bit real mode code is located, aka INITSEG<<4;
BX, to indicate which CPU is running, 0 means BSP, other values for AP.
ESI points to the parameter area from the 16-bit real mode code, which will be copied to empty_zero_page later. ESI is only valid for BSP.
BSP (BootStrap Processor) and APs (Application Processors) are Intel terminologies. Check IA-32 Manual (Vol.3. Ch.7.5. Multiple-Processor (MP) Initialization) and MultiProcessor Specification for MP intialization issue.
From a software point of view, in a multiprocessor system, BSP and APs share the physical memory but use their own register sets. BSP runs the kernel code first, setups OS execution enviornment and triggers APs to run over it too. AP will be sleeping until BSP kicks it.
.text /////////////////////////////////////////////////////////////////////////////// startup_32() { /* set segments to known values */ cld; DS = ES = FS = GS = __KERNEL_DS; #ifdef CONFIG_SMP #define cr4_bits mmu_cr4_features-__PAGE_OFFSET /* long mmu_cr4_features defined in linux/arch/i386/kernel/setup.c * __PAGE_OFFSET = 0xC0000000, i.e. 3G */ // AP with CR4 support (> Intel 486) will copy CR4 from BSP if (BX && cr4_bits) { // turn on paging options (PSE, PAE, ...) CR4 |= cr4_bits; } else #endif { /* only BSP initializes page tables (pg0..empty_zero_page-1) * pg0 at .org 0x2000 * empty_zero_page at .org 0x4000 * total (0x4000-0x2000)/4 = 0x0800 entries */ pg0 = { 0x00000007, // 7 = PRESENT + RW + USER 0x00001007, // 0x1000 = 4096 = 4K 0x00002007, ... pg1: 0x00400007, ... 0x007FF007 // total 8M empty_zero_page: }; }
Why do we have to add "-__PAGE_OFFSET" when referring a kernel symbol, for example, like pg0?
In linux/arch/i386/vmlinux.lds
, we have:
. = 0xC0000000 + 0x100000; _text = .; /* Text and read-only data */ .text : { *(.text) ...
As pg0 is at offset 0x2000 of section
.text in
linux/arch/i386/kernel/head.o
,
which is the first file to be linked for linux/vmlinux
,
it will be at offset 0x2000 in output section .text.
Thus it will be located at address 0xC0000000+0x100000+0x2000 after linking.
[root@localhost boot]# nm --defined /boot/vmlinux-2.4.20-28.9 | grep 'startup_32 \|mmu_cr4_features\|pg0\|\<empty_zero_page\>' | sort c0100000 t startup_32 c0102000 T pg0 c0104000 T empty_zero_page c0376404 B mmu_cr4_features
In protected mode without paging enabled, linear address will be
mapped directly to physical address.
"movl $pg0-__PAGE_OFFSET,%edi" will set EDI=0x102000,
which is equal to the physical address of pg0
(as linux/vmlinux
is relocated to 0x100000).
Without this "-PAGE_OFFSET" scheme, it will access physical address
0xC0102000, which will be wrong and probably beyond RAM space.
mmu_cr4_features is in .bss section and is located at physical address 0x376404 in the above example.
After page tables are initialized, paging can be enabled.
// set page directory base pointer, physical address CR3 = swapper_pg_dir - __PAGE_OFFSET; // paging enabled! CR0 |= 0x80000000; // set PG bit goto 1f; // flush prefetch-queue 1: EAX = &1f; // address following the next instruction goto *(EAX); // relocate EIP 1: SS:ESP = *stack_start;
Page directory swapper_pg_dir (see definition in Section 6.5, “Miscellaneous”), together with page tables pg0 and pg1, defines that both linear address 0..8M-1 and 3G..3G+8M-1 are mapped to physical address 0..8M-1. We can access kernel symbols without "-__PAGE_OFFSET" from now on, because kernel space (resides in linear address >=3G) will be correctly mapped to its physical addresss after paging is enabled.
"lss stack_start,%esp" (SS:ESP = *stack_start) is the first example to reference a symbol without "-PAGE_OFFSET", which sets up a new stack. For BSP, the stack is at the end of init_task_union. For AP, stack_start.esp has been redefined by linux/arch/i386/kernel/smpboot.c:do_boot_cpu() to be "(void *) (1024 + PAGE_SIZE + (char *)idle)" in Section 8.2, “smp_init()”.
For paging mechanism and data structures, refer to IA-32 Manual Vol.3. (Ch.3.7. Page Translation Using 32-Bit Physical Addressing, Ch.9.8.3. Initializing Paging, Ch.9.9.1. Switching to Protected Mode, and Ch.18.26.3. Enabling and Disabling Paging).
#define OLD_CL_MAGIC_ADDR 0x90020 #define OLD_CL_MAGIC 0xA33F #define OLD_CL_BASE_ADDR 0x90000 #define OLD_CL_OFFSET 0x90022 #define NEW_CL_POINTER 0x228 /* Relative to real mode data */ #ifdef CONFIG_SMP if (BX) { EFLAGS = 0; // AP clears EFLAGS } else #endif { // Initial CPU cleans BSS clear BSS; // i.e. __bss_start .. _end setup_idt() { /* idt_table[256] defined in arch/i386/kernel/traps.c * located in section .data.idt EAX = __KERNEL_CS << 16 + ignore_int; DX = 0x8E00; // interrupt gate, dpl = 0, present idt_table[0..255] = {EAX, EDX}; } EFLAGS = 0; /* * Copy bootup parameters out of the way. First 2kB of * _empty_zero_page is for boot parameters, second 2kB * is for the command line. */ move *ESI (real-mode header) to empty_zero_page, 2KB; clear empty_zero_page+2K, 2KB; ESI = empty_zero_page[NEW_CL_POINTER]; if (!ESI) { // 32-bit command line pointer if (OLD_CL_MAGIC==(uint16)[OLD_CL_MAGIC_ADDR]) { ESI = [OLD_CL_BASE_ADDR] + (uint16)[OLD_CL_OFFSET]; move *ESI to empty_zero_page+2K, 2KB; } } else { // valid in 2.02+ move *ESI to empty_zero_page+2K, 2KB; } } }
For BSP, kernel parameters are copied from memory pointed by ESI to empty_zero_page. Kernel command line will be copied to empty_zero_page+2K if applicable.
Refer to IA-32 Manual Vol.1. (Ch.13. Processor Identification and Feature Determination) on how to identify processor type and processor features.
struct cpuinfo_x86; // see include/asm-i386/processor.h struct cpuinfo_x86 boot_cpu_data; // see arch/i386/kernel/setup.c #define CPU_PARAMS SYMBOL_NAME(boot_cpu_data) #define X86 CPU_PARAMS+0 #define X86_VENDOR CPU_PARAMS+1 #define X86_MODEL CPU_PARAMS+2 #define X86_MASK CPU_PARAMS+3 #define X86_HARD_MATH CPU_PARAMS+6 #define X86_CPUID CPU_PARAMS+8 #define X86_CAPABILITY CPU_PARAMS+12 #define X86_VENDOR_ID CPU_PARAMS+28 checkCPUtype: { X86_CPUID = -1; // no CPUID X86 = 3; // at least 386 save original EFLAGS to ECX; flip AC bit (0x40000) in EFLAGS; if (AC bit not changed) goto is386; X86 = 4; // at least 486 flip ID bit (0X200000) in EFLAGS; restore original EFLAGS; // for AC & ID flags if (ID bit can not be changed) goto is486; // get CPU info CPUID(EAX=0); X86_CPUID = EAX; X86_VENDOR_ID = {EBX, EDX, ECX}; if (!EAX) goto is486; CPUID(EAX=1); CL = AL; X86 = AH & 0x0f; // family X86_MODEL = (AL & 0xf0) >> 4; // model X86_MASK = CL & 0x0f; // stepping id X86_CAPABILITY = EDX; // feature
Refer to IA-32 Manual Vol.3. (Ch.9.2. x87 FPU Initialization, and Ch.18.14. x87 FPU) on how to setup x87 FPU.
is486: // save PG, PE, ET and set AM, WP, NE, MP EAX = (CR0 & 0x80000011) | 0x50022; goto 2f; // skip "is386:" processing is386: restore original EFLAGS from ECX; // save PG, PE, ET and set MP EAX = (CR0 & 0x80000011) | 0x02; /* ET: Extension Type (bit 4 of CR0). * In the Intel 386 and Intel 486 processors, this flag indicates * support of Intel 387 DX math coprocessor instructions when set. * In the Pentium 4, Intel Xeon, and P6 family processors, * this flag is hardcoded to 1. * -- IA-32 Manual Vol.3. Ch.2.5. Control Registers (p.2-14) */ 2: CR0 = EAX; check_x87() { /* We depend on ET to be correct. * This checks for 287/387. */ X86_HARD_MATH = 0; clts; // CR0.TS = 0; fninit; // Init FPU; fstsw AX; // AX = ST(0); if (AL) { CR0 ^= 0x04; // no coprocessor, set EM } else { ALIGN 1: X86_HARD_MATH = 1; /* IA-32 Manual Vol.3. Ch.18.14.7.14. FSETPM Instruction * inform 287 that processor is in protected mode * 287 only, ignored by 387 */ fsetpm; } } }
Macro ALIGN, defined in linux/include/linux/linkage.h
,
specifies 16-bytes alignment and fill value 0x90 (opcode for NOP). See also
Using as: Assembler Directives for the meaning of
directive .align.
ready: .byte 0; // global variable { ready++; // how many CPUs are ready lgdt gdt_descr; // use new descriptor table in safe place lidt idt_descr; goto __KERNEL_CS:$1f; // reload segment registers after "lgdt" 1: DS = ES = FS = GS = __KERNEL_DS; #ifdef CONFIG_SMP SS = __KERNEL_DS; // reload segment only #else SS:ESP = *stack_start; /* end of init_task_union, defined * in linux/arch/i386/kernel/init_task.c */ #endif EAX = 0; lldt AX; cld; #ifdef CONFIG_SMP if (1!=ready) { // not first CPU initialize_secondary(); // see linux/arch/i386/kernel/smpboot.c } else #endif { start_kernel(); // see linux/init/main.c } L6: goto L6; }
The first CPU (BSP) will call linux/init/main.c:start_kernel() and the others (AP) will call linux/arch/i386/kernel/smpboot.c:initialize_secondary(). See start_kernel() in Section 7, “linux/init/main.c” and initialize_secondary() in Section 8.4, “initialize_secondary()”.
init_task_union happens to be the task struct for the first process, "idle" process (pid=0), whose stack grows from the tail of init_task_union. The following is the code related to init_task_union:
ENTRY(stack_start) .long init_task_union+8192; .long __KERNEL_DS; #ifndef INIT_TASK_SIZE # define INIT_TASK_SIZE 2048*sizeof(long) #endif union task_union { struct task_struct task; unsigned long stack[INIT_TASK_SIZE/sizeof(long)]; }; /* INIT_TASK is used to set up the first task table, touch at * your own risk! Base=0, limit=0x1fffff (=2MB) */ union task_union init_task_union __attribute__((__section__(".data.init_task"))) = { INIT_TASK(init_task_union.task) };
init_task_union is for BSP "idle" process. Don't confuse it with "init" process, which will be mentioned in Section 7.2, “init()”.
/////////////////////////////////////////////////////////////////////////////// // default interrupt "handler" ignore_int() { printk("Unknown interrupt\n"); iret; } /* * The interrupt descriptor table has room for 256 idt's, * the global descriptor table is dependent on the number * of tasks we can have.. */ #define IDT_ENTRIES 256 #define GDT_ENTRIES (__TSS(NR_CPUS)) .globl SYMBOL_NAME(idt) .globl SYMBOL_NAME(gdt) ALIGN .word 0 idt_descr: .word IDT_ENTRIES*8-1 # idt contains 256 entries SYMBOL_NAME(idt): .long SYMBOL_NAME(idt_table) .word 0 gdt_descr: .word GDT_ENTRIES*8-1 SYMBOL_NAME(gdt): .long SYMBOL_NAME(gdt_table) /* * This is initialized to create an identity-mapping at 0-8M (for bootup * purposes) and another mapping of the 0-8M area at virtual address * PAGE_OFFSET. */ .org 0x1000 ENTRY(swapper_pg_dir) // "ENTRY" defined in linux/include/linux/linkage.h .long 0x00102007 .long 0x00103007 .fill BOOT_USER_PGD_PTRS-2,4,0 /* default: 766 entries */ .long 0x00102007 .long 0x00103007 /* default: 254 entries */ .fill BOOT_KERNEL_PGD_PTRS-2,4,0 /* * The page tables are initialized to only 8MB here - the final page * tables are set up later depending on memory size. */ .org 0x2000 ENTRY(pg0) .org 0x3000 ENTRY(pg1) /* * empty_zero_page must immediately follow the page tables ! (The * initialization loop counts until empty_zero_page) */ .org 0x4000 ENTRY(empty_zero_page) /* * Real beginning of normal "text" segment */ .org 0x5000 ENTRY(stext) ENTRY(_stext) /////////////////////////////////////////////////////////////////////////////// /* * This starts the data section. Note that the above is all * in the text section because it has alignment requirements * that we cannot fulfill any other way. */ .data ALIGN /* * This contains typically 140 quadwords, depending on NR_CPUS. * * NOTE! Make sure the gdt descriptor in head.S matches this if you * change anything. */ ENTRY(gdt_table) .quad 0x0000000000000000 /* NULL descriptor */ .quad 0x0000000000000000 /* not used */ .quad 0x00cf9a000000ffff /* 0x10 kernel 4GB code at 0x00000000 */ .quad 0x00cf92000000ffff /* 0x18 kernel 4GB data at 0x00000000 */ .quad 0x00cffa000000ffff /* 0x23 user 4GB code at 0x00000000 */ .quad 0x00cff2000000ffff /* 0x2b user 4GB data at 0x00000000 */ .quad 0x0000000000000000 /* not used */ .quad 0x0000000000000000 /* not used */ /* * The APM segments have byte granularity and their bases * and limits are set at run time. */ .quad 0x0040920000000000 /* 0x40 APM set up for bad BIOS's */ .quad 0x00409a0000000000 /* 0x48 APM CS code */ .quad 0x00009a0000000000 /* 0x50 APM CS 16 code (16 bit) */ .quad 0x0040920000000000 /* 0x58 APM DS data */ .fill NR_CPUS*4,8,0 /* space for TSS's and LDT's */
Macro ALIGN, before idt_descr and gdt_table, is for performance consideration.
I felt guilty writing this chapter as there are too many documents about it, if not more than enough. start_kernel() supporting functions are changed from version to version, as they depend on OS component internals, which are being improved all the time. I may not have the time for frequent document updates, so I decided to keep this chapter as simple as possible.
/////////////////////////////////////////////////////////////////////////////// asmlinkage void __init start_kernel(void) { char * command_line; extern char saved_command_line[]; /* * Interrupts are still disabled. Do necessary setups, then enable them */ lock_kernel(); printk(linux_banner); /* Memory Management in Linux, esp. for setup_arch() * Linux-2.4.4 MM Initialization */ setup_arch(&command_line); printk("Kernel command line: %s\n", saved_command_line); /*linux/Documentation/kernel-parameters.txt
* The Linux BootPrompt-HowTo */ parse_options(command_line); trap_init() { #ifdef CONFIG_EISA if (isa_readl(0x0FFFD9) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) EISA_bus = 1; #endif #ifdef CONFIG_X86_LOCAL_APIC init_apic_mappings(); #endif set_xxxx_gate(x, &func); // setup gates cpu_init(); } init_IRQ(); sched_init(); softirq_init() { for (int i=0; i<32: i++) tasklet_init(bh_task_vec+i, bh_action, i); open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL); open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL); } time_init(); /* * HACK ALERT! This is early. We're enabling the console before * we've done PCI setups etc, and console_init() must be aware of * this. But we do want output early, in case something goes wrong. */ console_init(); #ifdef CONFIG_MODULES init_modules(); #endif if (prof_shift) { unsigned int size; /* only text is profiled */ prof_len = (unsigned long) &_etext - (unsigned long) &_stext; prof_len >>= prof_shift; size = prof_len * sizeof(unsigned int) + PAGE_SIZE-1; prof_buffer = (unsigned int *) alloc_bootmem(size); } kmem_cache_init(); sti(); // BogoMips mini-Howto calibrate_delay(); //linux/Documentation/initrd.txt
#ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && initrd_start < min_low_pfn << PAGE_SHIFT) { printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - " "disabling it.\n",initrd_start,min_low_pfn << PAGE_SHIFT); initrd_start = 0; } #endif mem_init(); kmem_cache_sizes_init(); pgtable_cache_init(); /* * For architectures that have highmem, num_mappedpages represents * the amount of memory the kernel can use. For other architectures * it's the same as the total pages. We need both numbers because * some subsystems need to initialize based on how much memory the * kernel can use. */ if (num_mappedpages == 0) num_mappedpages = num_physpages; fork_init(num_mempages); proc_caches_init(); vfs_caches_init(num_physpages); buffer_init(num_physpages); page_cache_init(num_physpages); #if defined(CONFIG_ARCH_S390) ccwcache_init(); #endif signals_init(); #ifdef CONFIG_PROC_FS proc_root_init(); #endif #if defined(CONFIG_SYSVIPC) ipc_init(); #endif check_bugs(); printk("POSIX conformance testing by UNIFIX\n"); /* * We count on the initial thread going ok * Like idlers init is an unlocked kernel thread, which will * make syscalls (and thus be locked). */ smp_init() { #ifndef CONFIG_SMP # ifdef CONFIG_X86_LOCAL_APIC APIC_init_uniprocessor(); # else do { } while (0); # endif #else /* Check Section 8.2, “smp_init()”. */ #endif } rest_init() { // init process, pid = 1 kernel_thread(init, NULL, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); unlock_kernel(); current->need_resched = 1; // idle process, pid = 0 cpu_idle(); // never return } }
start_kernel() calls rest_init() to spawn an "init" process and become "idle" process itself.
"Init" process:
/////////////////////////////////////////////////////////////////////////////// static int init(void * unused) { lock_kernel(); do_basic_setup(); prepare_namespace(); /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. */ free_initmem(); unlock_kernel(); if (open("/dev/console", O_RDWR, 0) < 0) // stdin printk("Warning: unable to open an initial console.\n"); (void) dup(0); // stdout (void) dup(0); // stderr /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) execve(execute_command,argv_init,envp_init); execve("/sbin/init",argv_init,envp_init); execve("/etc/init",argv_init,envp_init); execve("/bin/init",argv_init,envp_init); execve("/bin/sh",argv_init,envp_init); panic("No init found. Try passing init= option to kernel."); }
Refer to "man init" or SysVinit for further information on user-mode "init" process.
"Idle" process:
/* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle (void) { /* endless idle loop with no priority at all */ init_idle(); current->nice = 20; current->counter = -100; while (1) { void (*idle)(void) = pm_idle; if (!idle) idle = default_idle; while (!current->need_resched) idle(); schedule(); check_pgt_cache(); } } /////////////////////////////////////////////////////////////////////////////// void __init init_idle(void) { struct schedule_data * sched_data; sched_data = &aligned_data[smp_processor_id()].schedule_data; if (current != &init_task && task_on_runqueue(current)) { printk("UGH! (%d:%d) was on the runqueue, removing.\n", smp_processor_id(), current->pid); del_from_runqueue(current); } sched_data->curr = current; sched_data->last_schedule = get_cycles(); clear_bit(current->processor, &wait_init_idle); } /////////////////////////////////////////////////////////////////////////////// void default_idle(void) { if (current_cpu_data.hlt_works_ok && !hlt_counter) { __cli(); if (!current->need_resched) safe_halt(); else __sti(); } } /* defined in linux/include/asm-i386/system.h */ #define __cli() __asm__ __volatile__("cli": : :"memory") #define __sti() __asm__ __volatile__("sti": : :"memory") /* used in the idle loop; sti takes one instruction cycle to complete */ #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
CPU will resume code execution with the instruction following "hlt" on the return from an interrupt handler.
There are a few SMP related macros, like CONFIG_SMP, CONFIG_X86_LOCAL_APIC, CONFIG_X86_IO_APIC, CONFIG_MULTIQUAD and CONFIG_VISWS. I will ignore code that requires CONFIG_MULTIQUAD or CONFIG_VISWS, which most people don't care (if not using IBM high-end multiprocessor server or SGI Visual Workstation).
BSP executes start_kernel() -> smp_init() -> smp_boot_cpus() -> do_boot_cpu() -> wakeup_secondary_via_INIT() to trigger APs. Check MultiProcessor Specification and IA-32 Manual Vol.3 (Ch.7. Multile-Processor Management, and Ch.8. Advanced Programmable Interrupt Controller) for technical details.
Before calling smp_init(), start_kernel() did something to setup SMP environment:
start_kernel() |-- setup_arch() | |-- parse_cmdline_early(); // SMP looks for "noht" and "acpismp=force" | | `-- /* "noht" disables HyperThreading (2 logical cpus per Xeon) */ | | if (!memcmp(from, "noht", 4)) { | | disable_x86_ht = 1; | | set_bit(X86_FEATURE_HT, disabled_x86_caps); | | } | | /* "acpismp=force" forces parsing and use of the ACPI SMP table */ | | else if (!memcmp(from, "acpismp=force", 13)) | | enable_acpi_smp_table = 1; | |-- setup_memory(); // reserve memory for MP configuration table | | |-- reserve_bootmem(PAGE_SIZE, PAGE_SIZE); | | `-- find_smp_config(); | | `-- find_intel_smp(); | | `-- smp_scan_config(); | | |-- set flag smp_found_config | | |-- set MP floating pointer mpf_found | | `-- reserve_bootmem(mpf_found, PAGE_SIZE); | |-- if (disable_x86_ht) { // if HyperThreading feature disabled | | clear_bit(X86_FEATURE_HT, &boot_cpu_data.x86_capability[0]); | | set_bit(X86_FEATURE_HT, disabled_x86_caps); | | enable_acpi_smp_table = 0; | | } | |-- if (test_bit(X86_FEATURE_HT, &boot_cpu_data.x86_capability[0])) | | enable_acpi_smp_table = 1; | |-- smp_alloc_memory(); | | `-- /* reserve AP processor's real-mode code space in low memory */ | | trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); | `-- get_smp_config(); /* get boot-time MP configuration */ | |-- config_acpi_tables(); | | |-- memset(&acpi_boot_ops, 0, sizeof(acpi_boot_ops)); | | |-- acpi_boot_ops[ACPI_APIC] = acpi_parse_madt; | | `-- /* Set have_acpi_tables to indicate using | | * MADT in the ACPI tables; Use MPS tables if failed. */ | | if (enable_acpi_smp_table && !acpi_tables_init()) | | have_acpi_tables = 1; | |-- set pic_mode | | /* =1, if the IMCR is present and PIC Mode is implemented; | | * =0, otherwise Virtual Wire Mode is implemented. */ | |-- save local APIC address in mp_lapic_addr | `-- scan for MP configuration table entries, like | MP_PROCESSOR, MP_BUS, MP_IOAPIC, MP_INTSRC and MP_LINTSRC. |-- trap_init(); | `-- init_apic_mappings(); // setup PTE for APIC | |-- /* If no local APIC can be found then set up a fake all | | * zeroes page to simulate the local APIC and another | | * one for the IO-APIC. */ | | if (!smp_found_config && detect_init_APIC()) { | | apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE); | | apic_phys = __pa(apic_phys); | | } else | | apic_phys = mp_lapic_addr; | |-- /* map local APIC address, | | * mp_lapic_addr (0xfee00000) in most case, | | * to linear address FIXADDR_TOP (0xffffe000) */ | | set_fixmap_nocache(FIX_APIC_BASE, apic_phys); | |-- /* Fetch the APIC ID of the BSP in case we have a | | * default configuration (or the MP table is broken). */ | | if (boot_cpu_physical_apicid == -1U) | | boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID)); | `-- // map IOAPIC address to uncacheable linear address | set_fixmap_nocache(idx, ioapic_phys); | // Now we can use linear address to access APIC space. |-- init_IRQ(); | |-- init_ISA_irqs(); | | |-- /* An initial setup of the virtual wire mode. */ | | | init_bsp_APIC(); | | `-- init_8259A(auto_eoi=0); | `-- setup SMP/APIC interrupt handlers, esp. IPI. `-- mem_init(); `-- /* delay zapping low mapping entries for SMP: zap_low_mappings() */
IPI (InterProcessor Interrupt), CPU-to-CPU interrupt through local APIC, is the mechanism used by BSP to trigger APs.
Be aware that "one local APIC per CPU is required" in an MP-compliant system. Processors do not share APIC local units address space (physical address 0xFEE00000 - 0xFEEFFFFF), but will share APIC I/O units (0xFEC00000 - 0xFECFFFFF). Both address spaces are uncacheable.
BSP calls start_kernel() -> smp_init() -> smp_boot_cpus() to setup data structures for each CPU and activate the rest APs.
/////////////////////////////////////////////////////////////////////////////// static void __init smp_init(void) { /* Get other processors into their bootup holding patterns. */ smp_boot_cpus(); wait_init_idle = cpu_online_map; clear_bit(current->processor, &wait_init_idle); /* Don't wait on me! */ smp_threads_ready=1; smp_commence() { /* Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n"); wmb(); atomic_set(&smp_commenced,1); } /* Wait for the other cpus to set up their idle processes */ printk("Waiting on wait_init_idle (map = 0x%lx)\n", wait_init_idle); while (wait_init_idle) { cpu_relax(); // i.e. "rep;nop" barrier(); } printk("All processors have done init_idle\n"); } /////////////////////////////////////////////////////////////////////////////// void __init smp_boot_cpus(void) { // ... something not very interesting :-) /* Initialize the logical to physical CPU number mapping * and the per-CPU profiling router/multiplier */ prof_counter[0..NR_CPUS-1] = 0; prof_old_multiplier[0..NR_CPUS-1] = 0; prof_multiplier[0..NR_CPUS-1] = 0; init_cpu_to_apicid() { physical_apicid_2_cpu[0..MAX_APICID-1] = -1; logical_apicid_2_cpu[0..MAX_APICID-1] = -1; cpu_2_physical_apicid[0..NR_CPUS-1] = 0; cpu_2_logical_apicid[0..NR_CPUS-1] = 0; } /* Setup boot CPU information */ smp_store_cpu_info(0); /* Final full version of the data */ printk("CPU%d: ", 0); print_cpu_info(&cpu_data[0]); /* We have the boot CPU online for sure. */ set_bit(0, &cpu_online_map); boot_cpu_logical_apicid = logical_smp_processor_id() { GET_APIC_LOGICAL_ID(*(unsigned long *)(APIC_BASE+APIC_LDR)); } map_cpu_to_boot_apicid(0, boot_cpu_apicid) { physical_apicid_2_cpu[boot_cpu_apicid] = 0; cpu_2_physical_apicid[0] = boot_cpu_apicid; } global_irq_holder = 0; current->processor = 0; init_idle(); // will clear corresponding bit in wait_init_idle smp_tune_scheduling(); // ... some conditions checked connect_bsp_APIC(); // enable APIC mode if used to be PIC mode setup_local_APIC(); if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_physical_apicid) BUG(); /* Scan the CPU present map and fire up the other CPUs * via do_boot_cpu() */ Dprintk("CPU present map: %lx\n", phys_cpu_present_map); for (bit = 0; bit < NR_CPUS; bit++) { apicid = cpu_present_to_apicid(bit); /* Don't even attempt to start the boot CPU! */ if (apicid == boot_cpu_apicid) continue; if (!(phys_cpu_present_map & (1 << bit))) continue; if ((max_cpus >= 0) && (max_cpus <= cpucount+1)) continue; do_boot_cpu(apicid); /* Make sure we unmap all failed CPUs */ if ((boot_apicid_to_cpu(apicid) == -1) && (phys_cpu_present_map & (1 << bit))) printk("CPU #%d not responding - cannot use it.\n", apicid); } // ... SMP BogoMIPS // ... B stepping processor warning // ... HyperThreading handling /* Set up all local APIC timers in the system */ setup_APIC_clocks(); /* Synchronize the TSC with the AP */ if (cpu_has_tsc && cpucount) synchronize_tsc_bp(); smp_done: zap_low_mappings(); } /////////////////////////////////////////////////////////////////////////////// static void __init do_boot_cpu (int apicid) { cpu = ++cpucount; // 1. prepare "idle process" task struct for next AP /* We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpu); /* We remove it from the pidhash and the runqueue * once we got the process: */ idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpu); /* we schedule the first task manually */ idle->processor = cpu; idle->cpus_runnable = 1 << cpu; // only on this AP! map_cpu_to_boot_apicid(cpu, apicid) { physical_apicid_2_cpu[apicid] = cpu; cpu_2_physical_apicid[cpu] = apicid; } idle->thread.eip = (unsigned long) start_secondary; del_from_runqueue(idle); unhash_process(idle); init_tasks[cpu] = idle; // 2. prepare stack and code (CS:IP) for next AP /* start_eip had better be page-aligned! */ start_eip = setup_trampoline() { memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); /* trampoline_base was reserved in * start_kernel() -> setup_arch() -> smp_alloc_memory(), * and will be shared by all APs (one by one) */ return virt_to_phys(trampoline_base); } /* So we see what's up */ printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle); /* this value is used by next AP when it executes * "lss stack_start,%esp" in * linux/arch/i386/kernel/head.S:startup_32(). */ /* This grunge runs the startup process for * the targeted processor. */ atomic_set(&init_deasserted, 0); Dprintk("Setting warm reset code and vector.\n"); CMOS_WRITE(0xa, 0xf); local_flush_tlb(); Dprintk("1.\n"); *((volatile unsigned short *) TRAMPOLINE_HIGH) = start_eip >> 4; Dprintk("2.\n"); *((volatile unsigned short *) TRAMPOLINE_LOW) = start_eip & 0xf; Dprintk("3.\n"); // we have setup 0:467 to start_eip (trampoline_base) // 3. kick AP to run (AP gets CS:IP from 0:467) // Starting actual IPI sequence... boot_error = wakeup_secondary_via_INIT(apicid, start_eip); if (!boot_error) { // looks OK /* allow APs to start initializing. */ set_bit(cpu, &cpu_callout_map); /* ... Wait 5s total for a response */ // bit cpu in cpu_callin_map is set by AP in smp_callin() if (test_bit(cpu, &cpu_callin_map)) { print_cpu_info(&cpu_data[cpu]); } else { boot_error= 1; // marker 0xA5 set by AP in trampoline_data() if (*((volatile unsigned char *)phys_to_virt(8192)) == 0xA5) /* trampoline started but... */ printk("Stuck ??\n"); else /* trampoline code not run */ printk("Not responding.\n"); } } if (boot_error) { /* Try to put things back the way they were before ... */ unmap_cpu_to_boot_apicid(cpu, apicid); clear_bit(cpu, &cpu_callout_map); /* set in do_boot_cpu() */ clear_bit(cpu, &cpu_initialized); /* set in cpu_init() */ clear_bit(cpu, &cpu_online_map); /* set in smp_callin() */ cpucount--; } /* mark "stuck" area as not stuck */ *((volatile unsigned long *)phys_to_virt(8192)) = 0; }
Don't confuse start_secondary() with trampoline_data(). The former is AP "idle" process task struct EIP value, and the latter is the real-mode code that AP runs after BSP kicks it (using wakeup_secondary_via_INIT()).
This file contains the 16-bit real-mode AP startup code. BSP reserved memory space trampoline_base in start_kernel() -> setup_arch() -> smp_alloc_memory(). Before BSP triggers AP, it copies the trampoline code, between trampoline_data and trampoline_end, to trampoline_base (in do_boot_cpu() -> setup_trampoline()). BSP sets up 0:467 to point to trampoline_base, so that AP will run from here.
/////////////////////////////////////////////////////////////////////////////// trampoline_data() { r_base: wbinvd; // Needed for NUMA-Q should be harmless for other DS = CS; BX = 1; // Flag an SMP trampoline cli; // write marker for master knows we're running trampoline_base = 0xA5A5A5A5; lidt idt_48; lgdt gdt_48; AX = 1; lmsw AX; // protected mode! goto flush_instr; flush_instr: goto CS:100000; // see linux/arch/i386/kernel/head.S:startup_32() } idt_48: .word 0 # idt limit = 0 .word 0, 0 # idt base = 0L gdt_48: .word 0x0800 # gdt limit = 2048, 256 GDT entries .long gdt_table-__PAGE_OFFSET # gdt base = gdt (first SMP CPU) .globl SYMBOL_NAME(trampoline_end) SYMBOL_NAME_LABEL(trampoline_end)
Note that BX=1 when AP jumps to
linux/arch/i386/kernel/head.S:startup_32()
,
which is different from that of BSP (BX=0).
See Section 6, “linux/arch/i386/kernel/head.S”.
Unlike BSP, at the end of linux/arch/i386/kernel/head.S:startup_32() in Section 6.4, “Go Start Kernel”, AP will call initialize_secondary() instead of start_kernel().
/* Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */ void __init initialize_secondary(void) { /* We don't actually need to load the full TSS, * basically just the stack pointer and the eip. */ asm volatile( "movl %0,%%esp\n\t" "jmp *%1" : :"r" (current->thread.esp),"r" (current->thread.eip)); }
As BSP called do_boot_cpu() to set thread.eip to start_secondary(), control of AP is passed to this function. AP uses a new stack frame, which was set up by BSP in do_boot_cpu() -> fork_by_hand() -> do_fork().
All APs wait for signal smp_commenced from BSP, triggered in Section 8.2, “smp_init()” smp_init() -> smp_commence(). After getting this signal, they will run "idle" processes.
/////////////////////////////////////////////////////////////////////////////// int __init start_secondary(void *unused) { /* Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ cpu_init(); smp_callin(); while (!atomic_read(&smp_commenced)) rep_nop(); /* low-memory mappings have been cleared, flush them from * the local TLBs too. */ local_flush_tlb(); return cpu_idle(); // never return, see Section 7.3, “cpu_idle()” }
cpu_idle() -> init_idle() will clear corresponding bit in wait_init_idle, and finally make BSP finish smp_init() and continue with the following function in start_kernel() (i.e. rest_init()).
An Implementation Of Multiprocessor Linux:
linux/Documentation/smp.tex
Here is a kernel build example (in Redhat 9.0). Statements between "/*" and "*/" are in-line comments, not console output.
[root@localhost root]# ln -s /usr/src/linux-2.4.20 /usr/src/linux [root@localhost root]# cd /usr/src/linux [root@localhost linux]# make xconfig /* Create .config * 1. "Load Configuration from File" -> * /boot/config-2.4.20-28.9, or whatever you like * 2. Modify kernel configuration parameters * 3. "Save and Exit" */ [root@localhost linux]# make oldconfig /* Re-check .config, optional */ [root@localhost linux]# vi Makefile /* Modify EXTRAVERSION in linux/Makefile, optional */ [root@localhost linux]# make dep /* Create .depend and more */ [root@localhost linux]# make bzImage /* ... Some output omitted */ ld -m elf_i386 -T /usr/src/linux-2.4.20/arch/i386/vmlinux.lds -e stext arch/i386 /kernel/head.o arch/i386/kernel/init_task.o init/main.o init/version.o init/do_m ounts.o \ --start-group \ arch/i386/kernel/kernel.o arch/i386/mm/mm.o kernel/kernel.o mm/mm.o fs/f s.o ipc/ipc.o \ drivers/char/char.o drivers/block/block.o drivers/misc/misc.o drivers/n et/net.o drivers/media/media.o drivers/char/drm/drm.o drivers/net/fc/fc.o driver s/net/appletalk/appletalk.o drivers/net/tokenring/tr.o drivers/net/wan/wan.o dri vers/atm/atm.o drivers/ide/idedriver.o drivers/cdrom/driver.o drivers/pci/driver .o drivers/net/pcmcia/pcmcia_net.o drivers/net/wireless/wireless_net.o drivers/p np/pnp.o drivers/video/video.o drivers/net/hamradio/hamradio.o drivers/md/mddev. o drivers/isdn/vmlinux-obj.o \ net/network.o \ /usr/src/linux-2.4.20/arch/i386/lib/lib.a /usr/src/linux-2.4.20/lib/lib. a /usr/src/linux-2.4.20/arch/i386/lib/lib.a \ --end-group \ -o vmlinux nm vmlinux | grep -v '\(compiled\)\|\(\.o$\)\|\( [aUw] \)\|\(\.\.ng$\)\|\(LASH[R L]DI\)' | sort > System.map make[1]: Entering directory `/usr/src/linux-2.4.20/arch/i386/boot' gcc -E -D__KERNEL__ -I/usr/src/linux-2.4.20/include -D__BIG_KERNEL__ -traditiona l -DSVGA_MODE=NORMAL_VGA bootsect.S -o bbootsect.s as -o bbootsect.o bbootsect.s bootsect.S: Assembler messages: bootsect.S:239: Warning: indirect lcall without `*' ld -m elf_i386 -Ttext 0x0 -s --oformat binary bbootsect.o -o bbootsect gcc -E -D__KERNEL__ -I/usr/src/linux-2.4.20/include -D__BIG_KERNEL__ -D__ASSEMBL Y__ -traditional -DSVGA_MODE=NORMAL_VGA setup.S -o bsetup.s as -o bsetup.o bsetup.s setup.S: Assembler messages: setup.S:230: Warning: indirect lcall without `*' ld -m elf_i386 -Ttext 0x0 -s --oformat binary -e begtext -o bsetup bsetup.o make[2]: Entering directory `/usr/src/linux-2.4.20/arch/i386/boot/compressed' tmppiggy=_tmp_$$piggy; \ rm -f $tmppiggy $tmppiggy.gz $tmppiggy.lnk; \ objcopy -O binary -R .note -R .comment -S /usr/src/linux-2.4.20/vmlinux $tmppigg y; \ gzip -f -9 < $tmppiggy > $tmppiggy.gz; \ echo "SECTIONS { .data : { input_len = .; LONG(input_data_end - input_data) inpu t_data = .; *(.data) input_data_end = .; }}" > $tmppiggy.lnk; \ ld -m elf_i386 -r -o piggy.o -b binary $tmppiggy.gz -b elf32-i386 -T $tmppiggy.l nk; \ rm -f $tmppiggy $tmppiggy.gz $tmppiggy.lnk gcc -D__ASSEMBLY__ -D__KERNEL__ -I/usr/src/linux-2.4.20/include -traditional -c head.S gcc -D__KERNEL__ -I/usr/src/linux-2.4.20/include -Wall -Wstrict-prototypes -Wno- trigraphs -O2 -fno-strict-aliasing -fno-common -fomit-frame-pointer -pipe -mpref erred-stack-boundary=2 -march=i686 -DKBUILD_BASENAME=misc -c misc.c ld -m elf_i386 -Ttext 0x100000 -e startup_32 -o bvmlinux head.o misc.o piggy.o make[2]: Leaving directory `/usr/src/linux-2.4.20/arch/i386/boot/compressed' gcc -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -o tools/build tools/buil d.c -I/usr/src/linux-2.4.20/include objcopy -O binary -R .note -R .comment -S compressed/bvmlinux compressed/bvmlinu x.out tools/build -b bbootsect bsetup compressed/bvmlinux.out CURRENT > bzImage Root device is (3, 67) Boot sector 512 bytes. Setup is 4780 bytes. System is 852 kB make[1]: Leaving directory `/usr/src/linux-2.4.20/arch/i386/boot' [root@localhost linux]# make modules modules_install /* ... Some output omitted */ cd /lib/modules/2.4.20; \ mkdir -p pcmcia; \ find kernel -path '*/pcmcia/*' -name '*.o' | xargs -i -r ln -sf ../{} pcmcia if [ -r System.map ]; then /sbin/depmod -ae -F System.map 2.4.20; fi [root@localhost linux]# cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.20 [root@localhost linux]# cp vmlinux /boot/vmlinux-2.4.20 [root@localhost linux]# cp System.map /boot/System.map-2.4.20 [root@localhost linux]# cp .config /boot/config-2.4.20 [root@localhost linux]# mkinitrd /boot/initrd-2.4.20.img 2.4.20 [root@localhost linux]# vi /boot/grub/grub.conf /* Add the following lines to grub.conf: title Linux (2.4.20) kernel /vmlinuz-2.4.20 ro root=LABEL=/ initrd /initrd-2.4.20.img */
Refer to Kernelnewbies FAQ: How do I compile a kernel and Kernel Rebuild Procedure for more details.
To build the kernel in Debian, also refer to Debian Installation Manual: Compiling a New Kernel, The Debian GNU/Linux FAQ: Debian and the kernel and Debian Reference: The Linux kernel under Debian. Check "zless /usr/share/doc/kernel-package/Problems.gz" if you encounter problems.
Without -T (--script=) option specified, ld will use this builtin script to link targets:
[root@localhost linux]# ld --verbose GNU ld version 2.13.90.0.18 20030206 Supported emulations: elf_i386 i386linux using internal linker script: ================================================== /* Script for -z combreloc: combine and sort reloc sections */ OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386") OUTPUT_ARCH(i386) ENTRY(_start) SEARCH_DIR("/usr/i386-redhat-linux/lib"); SEARCH_DIR("/usr/lib"); SEARCH_DIR("/u sr/local/lib"); SEARCH_DIR("/lib"); /* Do we need any of these for elf? __DYNAMIC = 0; */ SECTIONS { /* Read-only sections, merged into text segment: */ . = 0x08048000 + SIZEOF_HEADERS; .interp : { *(.interp) } .hash : { *(.hash) } .dynsym : { *(.dynsym) } .dynstr : { *(.dynstr) } .gnu.version : { *(.gnu.version) } .gnu.version_d : { *(.gnu.version_d) } .gnu.version_r : { *(.gnu.version_r) } .rel.dyn : { *(.rel.init) *(.rel.text .rel.text.* .rel.gnu.linkonce.t.*) *(.rel.fini) *(.rel.rodata .rel.rodata.* .rel.gnu.linkonce.r.*) *(.rel.data .rel.data.* .rel.gnu.linkonce.d.*) *(.rel.tdata .rel.tdata.* .rel.gnu.linkonce.td.*) *(.rel.tbss .rel.tbss.* .rel.gnu.linkonce.tb.*) *(.rel.ctors) *(.rel.dtors) *(.rel.got) *(.rel.bss .rel.bss.* .rel.gnu.linkonce.b.*) } .rela.dyn : { *(.rela.init) *(.rela.text .rela.text.* .rela.gnu.linkonce.t.*) *(.rela.fini) *(.rela.rodata .rela.rodata.* .rela.gnu.linkonce.r.*) *(.rela.data .rela.data.* .rela.gnu.linkonce.d.*) *(.rela.tdata .rela.tdata.* .rela.gnu.linkonce.td.*) *(.rela.tbss .rela.tbss.* .rela.gnu.linkonce.tb.*) *(.rela.ctors) *(.rela.dtors) *(.rela.got) *(.rela.bss .rela.bss.* .rela.gnu.linkonce.b.*) } .rel.plt : { *(.rel.plt) } .rela.plt : { *(.rela.plt) } .init : { KEEP (*(.init)) } =0x90909090 .plt : { *(.plt) } .text : { *(.text .stub .text.* .gnu.linkonce.t.*) /* .gnu.warning sections are handled specially by elf32.em. */ *(.gnu.warning) } =0x90909090 .fini : { KEEP (*(.fini)) } =0x90909090 PROVIDE (__etext = .); PROVIDE (_etext = .); PROVIDE (etext = .); .rodata : { *(.rodata .rodata.* .gnu.linkonce.r.*) } .rodata1 : { *(.rodata1) } .eh_frame_hdr : { *(.eh_frame_hdr) } .eh_frame : ONLY_IF_RO { KEEP (*(.eh_frame)) } .gcc_except_table : ONLY_IF_RO { *(.gcc_except_table) } /* Adjust the address for the data segment. We want to adjust up to the same address within the page on the next page up. */ . = ALIGN (0x1000) - ((0x1000 - .) & (0x1000 - 1)); . = DATA_SEGMENT_ALIGN (0x 1000, 0x1000); /* For backward-compatibility with tools that don't support the *_array_* sections below, our glibc's crt files contain weak definitions of symbols that they reference. We don't want to use them, though, unless they're strictly necessary, because they'd bring us empty sections, unlike PROVIDE below, so we drop the sections from the crt files here. */ /DISCARD/ : { */crti.o(.init_array .fini_array .preinit_array) */crtn.o(.init_array .fini_array .preinit_array) } /* Ensure the __preinit_array_start label is properly aligned. We could instead move the label definition inside the section, but the linker would then create the section even if it turns out to be empty, which isn't pretty. */ . = ALIGN(32 / 8); PROVIDE (__preinit_array_start = .); .preinit_array : { *(.preinit_array) } PROVIDE (__preinit_array_end = .); PROVIDE (__init_array_start = .); .init_array : { *(.init_array) } PROVIDE (__init_array_end = .); PROVIDE (__fini_array_start = .); .fini_array : { *(.fini_array) } PROVIDE (__fini_array_end = .); .data : { *(.data .data.* .gnu.linkonce.d.*) SORT(CONSTRUCTORS) } .data1 : { *(.data1) } .tdata : { *(.tdata .tdata.* .gnu.linkonce.td.*) } .tbss : { *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.tcommon) } .eh_frame : ONLY_IF_RW { KEEP (*(.eh_frame)) } .gcc_except_table : ONLY_IF_RW { *(.gcc_except_table) } .dynamic : { *(.dynamic) } .ctors : { /* gcc uses crtbegin.o to find the start of the constructors, so we make sure it is first. Because this is a wildcard, it doesn't matter if the user does not actually link against crtbegin.o; the linker won't look for a file to match a wildcard. The wildcard also means that it doesn't matter which directory crtbegin.o is in. */ KEEP (*crtbegin.o(.ctors)) /* We don't want to include the .ctor section from from the crtend.o file until after the sorted ctors. The .ctor section from the crtend file contains the end of ctors marker and it must be last */ KEEP (*(EXCLUDE_FILE (*crtend.o ) .ctors)) KEEP (*(SORT(.ctors.*))) KEEP (*(.ctors)) } .dtors : { KEEP (*crtbegin.o(.dtors)) KEEP (*(EXCLUDE_FILE (*crtend.o ) .dtors)) KEEP (*(SORT(.dtors.*))) KEEP (*(.dtors)) } .jcr : { KEEP (*(.jcr)) } .got : { *(.got.plt) *(.got) } _edata = .; PROVIDE (edata = .); __bss_start = .; .bss : { *(.dynbss) *(.bss .bss.* .gnu.linkonce.b.*) *(COMMON) /* Align here to ensure that the .bss section occupies space up to _end. Align after .bss to ensure correct alignment even if the .bss section disappears because there are no input sections. */ . = ALIGN(32 / 8); } . = ALIGN(32 / 8); _end = .; PROVIDE (end = .); . = DATA_SEGMENT_END (.); /* Stabs debugging sections. */ .stab 0 : { *(.stab) } .stabstr 0 : { *(.stabstr) } .stab.excl 0 : { *(.stab.excl) } .stab.exclstr 0 : { *(.stab.exclstr) } .stab.index 0 : { *(.stab.index) } .stab.indexstr 0 : { *(.stab.indexstr) } .comment 0 : { *(.comment) } /* DWARF debug sections. Symbols in the DWARF debugging sections are relative to the beginning of the section so we begin them at 0. */ /* DWARF 1 */ .debug 0 : { *(.debug) } .line 0 : { *(.line) } /* GNU DWARF 1 extensions */ .debug_srcinfo 0 : { *(.debug_srcinfo) } .debug_sfnames 0 : { *(.debug_sfnames) } /* DWARF 1.1 and DWARF 2 */ .debug_aranges 0 : { *(.debug_aranges) } .debug_pubnames 0 : { *(.debug_pubnames) } /* DWARF 2 */ .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) } .debug_abbrev 0 : { *(.debug_abbrev) } .debug_line 0 : { *(.debug_line) } .debug_frame 0 : { *(.debug_frame) } .debug_str 0 : { *(.debug_str) } .debug_loc 0 : { *(.debug_loc) } .debug_macinfo 0 : { *(.debug_macinfo) } /* SGI/MIPS DWARF 2 extensions */ .debug_weaknames 0 : { *(.debug_weaknames) } .debug_funcnames 0 : { *(.debug_funcnames) } .debug_typenames 0 : { *(.debug_typenames) } .debug_varnames 0 : { *(.debug_varnames) } } ================================================== [root@localhost linux]#
Both GNU GRUB and LILO understand the real-mode kernel header format and will load the bootsect (one sector), setup code (setup_sects sectors) and compressed kernel image (syssize*16 bytes) into memory. They fill out the loader identifier (type_of_loader) and try to pass appropriate parameters and options to the kernel. After they finish their jobs, control is passed to setup code.
The following GNU GRUB program outline is based on grub-0.93.
stage2/stage2.c:cmain() `-- run_menu() `-- run_script(); |-- builtin = find_command(heap); |-- kernel_func(); // builtin->func() for command "kernel" | `-- load_image(); // search BOOTSEC_SIGNATURE in boot.c | /* memory from 0x100000 is populated by and in the order of | * (bvmlinux, bbootsect, bsetup) or (vmlinux, bootsect, setup) */ |-- initrd_func(); // for command "initrd" | `-- load_initrd(); `-- boot_func(); // for implicit command "boot" `-- linux_boot(); // defined in stage2/asm.S or big_linux_boot(); // not in grub/asmstub.c! // In stage2/asm.S linux_boot: /* copy kernel */ move system code from 0x100000 to 0x10000 (linux_text_len bytes); big_linux_boot: /* copy the real mode part */ EBX = linux_data_real_addr; move setup code from linux_data_tmp_addr (0x100000+text_len) to linux_data_real_addr (0x9100 bytes); /* change %ebx to the segment address */ linux_setup_seg = (EBX >> 4) + 0x20; /* XXX new stack pointer in safe area for calling functions */ ESP = 0x4000; stop_floppy(); /* final setup for linux boot */ prot_to_real(); cli; SS:ESP = BX:9000; DS = ES = FS = GS = BX; /* jump to start, i.e. ljmp linux_setup_seg:0 * Note that linux_setup_seg is just changed to BX. */ .byte 0xea .word 0 linux_setup_seg: .word 0
Refer to "info grub" for GRUB manual.
One reported GNU GRUB bug should be noted if you are porting grub-0.93 and making changes to bsetup.
Unlike GRUB, LILO does not check the configuration file when booting system. Tricks happen when lilo is invoked from terminal.
The following LILO program outline is based on lilo-22.5.8.
lilo.c:main() |-- cfg_open(config_file); |-- cfg_parse(cf_options); |-- bsect_open(boot_dev, map_file, install, delay, timeout); | |-- open_bsect(boot_dev); | `-- map_create(map_file); |-- cfg_parse(cf_top) | `-- cfg_do_set(); | `-- do_image(); // walk->action for "image=" section | |-- cfg_parse(cf_image) -> cfg_do_set(); | |-- bsect_common(&descr, 1); | | |-- map_begin_section(); | | |-- map_add_sector(fallback_buf); | | `-- map_add_sector(options); | |-- boot_image(name, &descr) or boot_device(name, range, &descr); | | |-- int fd = geo_open(&descr, name, O_RDONLY); | | | read(fd, &buff, SECTOR_SIZE); | | | map_add(&geo, 0, image_sectors); | | | map_end_section(&descr->start, setup_sects+2+1); | | | /* two sectors created in bsect_common(), | | | * another one sector for bootsect */ | | | geo_close(&geo); | | `-- fd = geo_open(&descr, initrd, O_RDONLY); | | map_begin_section(); | | map_add(&geo, 0, initrd_sectors); | | map_end_section(&descr->initrd,0); | | geo_close(&geo); | `-- bsect_done(name, &descr); `-- bsect_update(backup_file, force_backup, 0); // update boot sector |-- make_backup(); |-- map_begin_section(); | map_add_sector(table); | map_write(¶m2, keytab, 0, 0); | map_close(¶m2, here2); |-- // ... perform the relocation of the boot sector |-- // ... setup bsect_wr to correct place |-- write(fd, bsect_wr, SECTOR_SIZE); `-- close(fd);
map_add(), map_add_sector() and map_add_zero() may call map_register() to complete their jobs, while map_register() will keep a list for all (CX, DX, AL) triplets (data structure SECTOR_ADDR) used to identify all registered sectors.
LILO runs first.S
and second.S
to boot a system.
It calls second.S:doboot() to load map file,
bootsect and setup code.
Then it calls lfile() to load the system code,
calls launch2() -> launch() -> cl_wait() -> start_setup()
-> start_setup2() and finnaly executes
"jmpi 0,SETUPSEG" instruction to run setup code.
Refer to "man lilo" and "man lilo.conf" for LILO details.