Actual source code: da3.c

  1: #define PETSCDM_DLL
  2: /*
  3:    Code for manipulating distributed regular 3d arrays in parallel.
  4:    File created by Peter Mell  7/14/95
  5:  */

 7:  #include src/dm/da/daimpl.h

 11: PetscErrorCode DAView_3d(DA da,PetscViewer viewer)
 12: {
 14:   PetscMPIInt    rank;
 15:   PetscTruth     iascii,isdraw;

 18:   MPI_Comm_rank(da->comm,&rank);

 20:   PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_ASCII,&iascii);
 21:   PetscTypeCompare((PetscObject)viewer,PETSC_VIEWER_DRAW,&isdraw);
 22:   if (iascii) {
 23:     PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",
 24:                rank,da->M,da->N,da->P,da->m,da->n,da->p,da->w,da->s);
 25:     PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
 26:                da->xs,da->xe,da->ys,da->ye,da->zs,da->ze);
 27: #if !defined(PETSC_USE_COMPLEX)
 28:     if (da->coordinates) {
 29:       PetscInt  last;
 30:       PetscReal *coors;
 31:       VecGetArray(da->coordinates,&coors);
 32:       VecGetLocalSize(da->coordinates,&last);
 33:       last = last - 3;
 34:       PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %G %G %G : Upper right %G %G %G\n",
 35:                coors[0],coors[1],coors[2],coors[last],coors[last+1],coors[last+2]);
 36:       VecRestoreArray(da->coordinates,&coors);
 37:     }
 38: #endif
 39:     PetscViewerFlush(viewer);
 40:   } else if (isdraw) {
 41:     PetscDraw       draw;
 42:     PetscReal     ymin = -1.0,ymax = (PetscReal)da->N;
 43:     PetscReal     xmin = -1.0,xmax = (PetscReal)((da->M+2)*da->P),x,y,ycoord,xcoord;
 44:     PetscInt        k,plane,base,*idx;
 45:     char       node[10];
 46:     PetscTruth isnull;

 48:     PetscViewerDrawGetDraw(viewer,0,&draw);
 49:     PetscDrawIsNull(draw,&isnull); if (isnull) return(0);
 50:     PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
 51:     PetscDrawSynchronizedClear(draw);

 53:     /* first processor draw all node lines */
 54:     if (!rank) {
 55:       for (k=0; k<da->P; k++) {
 56:         ymin = 0.0; ymax = (PetscReal)(da->N - 1);
 57:         for (xmin=(PetscReal)(k*(da->M+1)); xmin<(PetscReal)(da->M+(k*(da->M+1))); xmin++) {
 58:           PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
 59:         }
 60: 
 61:         xmin = (PetscReal)(k*(da->M+1)); xmax = xmin + (PetscReal)(da->M - 1);
 62:         for (ymin=0; ymin<(PetscReal)da->N; ymin++) {
 63:           PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
 64:         }
 65:       }
 66:     }
 67:     PetscDrawSynchronizedFlush(draw);
 68:     PetscDrawPause(draw);

 70:     for (k=0; k<da->P; k++) {  /*Go through and draw for each plane*/
 71:       if ((k >= da->zs) && (k < da->ze)) {
 72:         /* draw my box */
 73:         ymin = da->ys;
 74:         ymax = da->ye - 1;
 75:         xmin = da->xs/da->w    + (da->M+1)*k;
 76:         xmax =(da->xe-1)/da->w + (da->M+1)*k;

 78:         PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
 79:         PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
 80:         PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
 81:         PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);

 83:         xmin = da->xs/da->w;
 84:         xmax =(da->xe-1)/da->w;

 86:         /* put in numbers*/
 87:         base = (da->base+(da->xe-da->xs)*(da->ye-da->ys)*(k-da->zs))/da->w;

 89:         /* Identify which processor owns the box */
 90:         sprintf(node,"%d",rank);
 91:         PetscDrawString(draw,xmin+(da->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);

 93:         for (y=ymin; y<=ymax; y++) {
 94:           for (x=xmin+(da->M+1)*k; x<=xmax+(da->M+1)*k; x++) {
 95:             sprintf(node,"%d",(int)base++);
 96:             PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
 97:           }
 98:         }
 99: 
100:       }
101:     }
102:     PetscDrawSynchronizedFlush(draw);
103:     PetscDrawPause(draw);

105:     for (k=0-da->s; k<da->P+da->s; k++) {
106:       /* Go through and draw for each plane */
107:       if ((k >= da->Zs) && (k < da->Ze)) {
108: 
109:         /* overlay ghost numbers, useful for error checking */
110:         base = (da->Xe-da->Xs)*(da->Ye-da->Ys)*(k-da->Zs); idx = da->idx;
111:         plane=k;
112:         /* Keep z wrap around points on the dradrawg */
113:         if (k<0)    { plane=da->P+k; }
114:         if (k>=da->P) { plane=k-da->P; }
115:         ymin = da->Ys; ymax = da->Ye;
116:         xmin = (da->M+1)*plane*da->w;
117:         xmax = (da->M+1)*plane*da->w+da->M*da->w;
118:         for (y=ymin; y<ymax; y++) {
119:           for (x=xmin+da->Xs; x<xmin+da->Xe; x+=da->w) {
120:             sprintf(node,"%d",(int)(idx[base]/da->w));
121:             ycoord = y;
122:             /*Keep y wrap around points on drawing */
123:             if (y<0)      { ycoord = da->N+y; }

125:             if (y>=da->N) { ycoord = y-da->N; }
126:             xcoord = x;   /* Keep x wrap points on drawing */

128:             if (x<xmin)  { xcoord = xmax - (xmin-x); }
129:             if (x>=xmax) { xcoord = xmin + (x-xmax); }
130:             PetscDrawString(draw,xcoord/da->w,ycoord,PETSC_DRAW_BLUE,node);
131:             base+=da->w;
132:           }
133:         }
134:       }
135:     }
136:     PetscDrawSynchronizedFlush(draw);
137:     PetscDrawPause(draw);
138:   } else {
139:     SETERRQ1(PETSC_ERR_SUP,"Viewer type %s not supported for DA 3d",((PetscObject)viewer)->type_name);
140:   }
141:   return(0);
142: }

144: EXTERN PetscErrorCode DAPublish_Petsc(PetscObject);

148: /*@C
149:    DACreate3d - Creates an object that will manage the communication of three-dimensional 
150:    regular array data that is distributed across some processors.

152:    Collective on MPI_Comm

154:    Input Parameters:
155: +  comm - MPI communicator
156: .  wrap - type of periodicity the array should have, if any.  Use one
157:           of DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, DA_XYPERIODIC, DA_XYZPERIODIC, DA_XZPERIODIC, or DA_YZPERIODIC.
158: .  stencil_type - Type of stencil (DA_STENCIL_STAR or DA_STENCIL_BOX)
159: .  M,N,P - global dimension in each direction of the array (use -M, -N, and or -P to indicate that it may be set to a different value 
160:             from the command line with -da_grid_x <M> -da_grid_y <N> -da_grid_z <P>)
161: .  m,n,p - corresponding number of processors in each dimension 
162:            (or PETSC_DECIDE to have calculated)
163: .  dof - number of degrees of freedom per node
164: .  lx, ly, lz - arrays containing the number of nodes in each cell along
165:           the x, y, and z coordinates, or PETSC_NULL. If non-null, these
166:           must be of length as m,n,p and the corresponding
167:           m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
168:           the ly[] must N, sum of the lz[] must be P
169: -  s - stencil width

171:    Output Parameter:
172: .  inra - the resulting distributed array object

174:    Options Database Key:
175: +  -da_view - Calls DAView() at the conclusion of DACreate3d()
176: .  -da_grid_x <nx> - number of grid points in x direction, if M < 0
177: .  -da_grid_y <ny> - number of grid points in y direction, if N < 0
178: .  -da_grid_z <nz> - number of grid points in z direction, if P < 0
179: .  -da_refine_x - refinement ratio in x direction
180: .  -da_refine_y - refinement ratio in y direction
181: -  -da_refine_y - refinement ratio in z direction

183:    Level: beginner

185:    Notes:
186:    The stencil type DA_STENCIL_STAR with width 1 corresponds to the 
187:    standard 7-pt stencil, while DA_STENCIL_BOX with width 1 denotes
188:    the standard 27-pt stencil.

190:    The array data itself is NOT stored in the DA, it is stored in Vec objects;
191:    The appropriate vector objects can be obtained with calls to DACreateGlobalVector()
192:    and DACreateLocalVector() and calls to VecDuplicate() if more are needed.

194: .keywords: distributed array, create, three-dimensional

196: .seealso: DADestroy(), DAView(), DACreate1d(), DACreate2d(), DAGlobalToLocalBegin(), DAGetRefinementFactor(),
197:           DAGlobalToLocalEnd(), DALocalToGlobal(), DALocalToLocalBegin(), DALocalToLocalEnd(), DASetRefinementFactor(),
198:           DAGetInfo(), DACreateGlobalVector(), DACreateLocalVector(), DACreateNaturalVector(), DALoad(), DAView()

200: @*/
201: PetscErrorCode PETSCDM_DLLEXPORT DACreate3d(MPI_Comm comm,DAPeriodicType wrap,DAStencilType stencil_type,PetscInt M,
202:                PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,PetscInt *lx,PetscInt *ly,PetscInt *lz,DA *inra)
203: {
205:   PetscMPIInt    rank,size;
206:   PetscInt       xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0,Xs,Xe,Ys,Ye,Zs,Ze,start,end,pm;
207:   PetscInt       left,up,down,bottom,top,i,j,k,*idx,nn,*flx = 0,*fly = 0,*flz = 0;
208:   PetscInt       n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
209:   PetscInt       n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
210:   PetscInt       *bases,*ldims,x_t,y_t,z_t,s_t,base,count,s_x,s_y,s_z;
211:   PetscInt       tM = M,tN = N,tP = P;
212:   PetscInt       sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
213:   PetscInt       sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
214:   PetscInt       sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0,refine_x = 2, refine_y = 2, refine_z = 2;
215:   PetscTruth     flg1;
216:   DA             da;
217:   Vec            local,global;
218:   VecScatter     ltog,gtol;
219:   IS             to,from;

223:   *inra = 0;
224: #ifndef PETSC_USE_DYNAMIC_LIBRARIES
225:   DMInitializePackage(PETSC_NULL);
226: #endif

228:   if (dof < 1) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Must have 1 or more degrees of freedom per node: %D",dof);
229:   if (s < 0) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Stencil width cannot be negative: %D",s);

231:   PetscOptionsBegin(comm,PETSC_NULL,"3d DA Options","DA");
232:     if (M < 0){
233:       tM   = -M;
234:       PetscOptionsInt("-da_grid_x","Number of grid points in x direction","DACreate3d",tM,&tM,PETSC_NULL);
235:     }
236:     if (N < 0){
237:       tN   = -N;
238:       PetscOptionsInt("-da_grid_y","Number of grid points in y direction","DACreate3d",tN,&tN,PETSC_NULL);
239:     }
240:     if (P < 0){
241:       tP   = -P;
242:       PetscOptionsInt("-da_grid_z","Number of grid points in z direction","DACreate3d",tP,&tP,PETSC_NULL);
243:     }
244:     PetscOptionsInt("-da_processors_x","Number of processors in x direction","DACreate3d",m,&m,PETSC_NULL);
245:     PetscOptionsInt("-da_processors_y","Number of processors in y direction","DACreate3d",n,&n,PETSC_NULL);
246:     PetscOptionsInt("-da_processors_z","Number of processors in z direction","DACreate3d",p,&p,PETSC_NULL);
247:     PetscOptionsInt("-da_refine_x","Refinement ratio in x direction","DASetRefinementFactor",refine_x,&refine_x,PETSC_NULL);
248:     PetscOptionsInt("-da_refine_y","Refinement ratio in y direction","DASetRefinementFactor",refine_y,&refine_y,PETSC_NULL);
249:     PetscOptionsInt("-da_refine_z","Refinement ratio in z direction","DASetRefinementFactor",refine_z,&refine_z,PETSC_NULL);
250:   PetscOptionsEnd();
251:   M = tM; N = tN; P = tP;

253:   PetscHeaderCreate(da,_p_DA,struct _DAOps,DA_COOKIE,0,"DA",comm,DADestroy,DAView);
254:   da->bops->publish           = DAPublish_Petsc;
255:   da->ops->createglobalvector = DACreateGlobalVector;
256:   da->ops->getinterpolation   = DAGetInterpolation;
257:   da->ops->getcoloring        = DAGetColoring;
258:   da->ops->getmatrix          = DAGetMatrix;
259:   da->ops->refine             = DARefine;

261:   PetscLogObjectMemory(da,sizeof(struct _p_DA));
262:   da->dim        = 3;
263:   da->interptype = DA_Q1;
264:   da->refine_x   = refine_x;
265:   da->refine_y   = refine_y;
266:   da->refine_z   = refine_z;
267:   PetscMalloc(dof*sizeof(char*),&da->fieldname);
268:   PetscMemzero(da->fieldname,dof*sizeof(char*));

270:   MPI_Comm_size(comm,&size);
271:   MPI_Comm_rank(comm,&rank);

273:   if (m != PETSC_DECIDE) {
274:     if (m < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);}
275:     else if (m > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);}
276:   }
277:   if (n != PETSC_DECIDE) {
278:     if (n < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);}
279:     else if (n > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);}
280:   }
281:   if (p != PETSC_DECIDE) {
282:     if (p < 1) {SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);}
283:     else if (p > size) {SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);}
284:   }

286:   /* Partition the array among the processors */
287:   if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
288:     m = size/(n*p);
289:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
290:     n = size/(m*p);
291:   } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
292:     p = size/(m*n);
293:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
294:     /* try for squarish distribution */
295:     m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
296:     if (!m) m = 1;
297:     while (m > 0) {
298:       n = size/(m*p);
299:       if (m*n*p == size) break;
300:       m--;
301:     }
302:     if (!m) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
303:     if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
304:   } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
305:     /* try for squarish distribution */
306:     m = (int)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
307:     if (!m) m = 1;
308:     while (m > 0) {
309:       p = size/(m*n);
310:       if (m*n*p == size) break;
311:       m--;
312:     }
313:     if (!m) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
314:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
315:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
316:     /* try for squarish distribution */
317:     n = (int)(0.5 + sqrt(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
318:     if (!n) n = 1;
319:     while (n > 0) {
320:       p = size/(m*n);
321:       if (m*n*p == size) break;
322:       n--;
323:     }
324:     if (!n) SETERRQ1(PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
325:     if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
326:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
327:     /* try for squarish distribution */
328:     n = (PetscInt)(0.5 + pow(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),1./3.));
329:     if (!n) n = 1;
330:     while (n > 0) {
331:       pm = size/n;
332:       if (n*pm == size) break;
333:       n--;
334:     }
335:     if (!n) n = 1;
336:     m = (PetscInt)(0.5 + sqrt(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
337:     if (!m) m = 1;
338:     while (m > 0) {
339:       p = size/(m*n);
340:       if (m*n*p == size) break;
341:       m--;
342:     }
343:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
344:   } else if (m*n*p != size) SETERRQ(PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");

346:   if (m*n*p != size) SETERRQ(PETSC_ERR_PLIB,"Could not find good partition");
347:   if (M < m) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
348:   if (N < n) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
349:   if (P < p) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);

351:   /* 
352:      Determine locally owned region 
353:      [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes 
354:   */
355:   if (!lx) { /* user decided distribution */
356:     PetscMalloc(m*sizeof(PetscInt),&lx);
357:     flx = lx;
358:     for (i=0; i<m; i++) {
359:       lx[i] = M/m + ((M % m) > (i % m));
360:     }
361:   }
362:   x  = lx[rank % m];
363:   xs = 0;
364:   for (i=0; i<(rank%m); i++) { xs += lx[i];}
365:   if (m > 1 && x < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Column width is too thin for stencil! %D %D",x,s);

367:   if (!ly) { /* user decided distribution */
368:     PetscMalloc(n*sizeof(PetscInt),&ly);
369:     fly = ly;
370:     for (i=0; i<n; i++) {
371:       ly[i] = N/n + ((N % n) > (i % n));
372:     }
373:   }
374:   y  = ly[(rank % (m*n))/m];
375:   if (n > 1 && y < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Row width is too thin for stencil! %D %D",y,s);
376:   ys = 0;
377:   for (i=0; i<(rank % (m*n))/m; i++) { ys += ly[i];}

379:   if (!lz) { /* user decided distribution */
380:     PetscMalloc(p*sizeof(PetscInt),&lz);
381:     flz = lz;
382:     for (i=0; i<p; i++) {
383:       lz[i] = P/p + ((P % p) > (i % p));
384:     }
385:   }
386:   z  = lz[rank/(m*n)];
387:   if (p > 1 && z < s) SETERRQ2(PETSC_ERR_ARG_OUTOFRANGE,"Plane width is too thin for stencil! %D %D",z,s);
388:   zs = 0;
389:   for (i=0; i<(rank/(m*n)); i++) { zs += lz[i];}
390:   ye = ys + y;
391:   xe = xs + x;
392:   ze = zs + z;

394:   /* determine ghost region */
395:   /* Assume No Periodicity */
396:   if (xs-s > 0) Xs = xs - s; else Xs = 0;
397:   if (ys-s > 0) Ys = ys - s; else Ys = 0;
398:   if (zs-s > 0) Zs = zs - s; else Zs = 0;
399:   if (xe+s <= M) Xe = xe + s; else Xe = M;
400:   if (ye+s <= N) Ye = ye + s; else Ye = N;
401:   if (ze+s <= P) Ze = ze + s; else Ze = P;

403:   /* X Periodic */
404:   if (DAXPeriodic(wrap)){
405:     Xs = xs - s;
406:     Xe = xe + s;
407:   }

409:   /* Y Periodic */
410:   if (DAYPeriodic(wrap)){
411:     Ys = ys - s;
412:     Ye = ye + s;
413:   }

415:   /* Z Periodic */
416:   if (DAZPeriodic(wrap)){
417:     Zs = zs - s;
418:     Ze = ze + s;
419:   }

421:   /* Resize all X parameters to reflect w */
422:   x   *= dof;
423:   xs  *= dof;
424:   xe  *= dof;
425:   Xs  *= dof;
426:   Xe  *= dof;
427:   s_x  = s*dof;
428:   s_y  = s;
429:   s_z  = s;

431:   /* determine starting point of each processor */
432:   nn       = x*y*z;
433:   PetscMalloc((2*size+1)*sizeof(PetscInt),&bases);
434:   ldims    = (PetscInt*)(bases+size+1);
435:   MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
436:   bases[0] = 0;
437:   for (i=1; i<=size; i++) {
438:     bases[i] = ldims[i-1];
439:   }
440:   for (i=1; i<=size; i++) {
441:     bases[i] += bases[i-1];
442:   }

444:   /* allocate the base parallel and sequential vectors */
445:   da->Nlocal = x*y*z;
446:   VecCreateMPIWithArray(comm,da->Nlocal,PETSC_DECIDE,0,&global);
447:   VecSetBlockSize(global,dof);
448:   da->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs);
449:   VecCreateSeqWithArray(MPI_COMM_SELF,da->nlocal,0,&local);
450:   VecSetBlockSize(local,dof);

452:   /* generate appropriate vector scatters */
453:   /* local to global inserts non-ghost point region into global */
454:   VecGetOwnershipRange(global,&start,&end);
455:   ISCreateStride(comm,x*y*z,start,1,&to);

457:   left   = xs - Xs;
458:   bottom = ys - Ys; top = bottom + y;
459:   down   = zs - Zs; up  = down + z;
460:   count  = x*(top-bottom)*(up-down);
461:   PetscMalloc(count*sizeof(PetscInt)/dof,&idx);
462:   count  = 0;
463:   for (i=down; i<up; i++) {
464:     for (j=bottom; j<top; j++) {
465:       for (k=0; k<x; k += dof) {
466:         idx[count++] = (left+j*(Xe-Xs))+i*(Xe-Xs)*(Ye-Ys) + k;
467:       }
468:     }
469:   }
470:   ISCreateBlock(comm,dof,count,idx,&from);
471:   PetscFree(idx);

473:   VecScatterCreate(local,from,global,to,&ltog);
474:   PetscLogObjectParent(da,to);
475:   PetscLogObjectParent(da,from);
476:   PetscLogObjectParent(da,ltog);
477:   ISDestroy(from);
478:   ISDestroy(to);

480:   /* global to local must include ghost points */
481:   if (stencil_type == DA_STENCIL_BOX) {
482:     ISCreateStride(comm,(Xe-Xs)*(Ye-Ys)*(Ze-Zs),0,1,&to);
483:   } else {
484:     /* This is way ugly! We need to list the funny cross type region */
485:     /* the bottom chunck */
486:     left   = xs - Xs;
487:     bottom = ys - Ys; top = bottom + y;
488:     down   = zs - Zs;   up  = down + z;
489:     count  = down*(top-bottom)*x + (up-down)*(bottom*x  + (top-bottom)*(Xe-Xs) + (Ye-Ys-top)*x) + (Ze-Zs-up)*(top-bottom)*x;
490:     PetscMalloc(count*sizeof(PetscInt)/dof,&idx);
491:     count  = 0;
492:     for (i=0; i<down; i++) {
493:       for (j=bottom; j<top; j++) {
494:         for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
495:       }
496:     }
497:     /* the middle piece */
498:     for (i=down; i<up; i++) {
499:       /* front */
500:       for (j=0; j<bottom; j++) {
501:         for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
502:       }
503:       /* middle */
504:       for (j=bottom; j<top; j++) {
505:         for (k=0; k<Xe-Xs; k += dof) idx[count++] = j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
506:       }
507:       /* back */
508:       for (j=top; j<Ye-Ys; j++) {
509:         for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
510:       }
511:     }
512:     /* the top piece */
513:     for (i=up; i<Ze-Zs; i++) {
514:       for (j=bottom; j<top; j++) {
515:         for (k=0; k<x; k += dof) idx[count++] = left+j*(Xe-Xs)+i*(Xe-Xs)*(Ye-Ys)+k;
516:       }
517:     }
518:     ISCreateBlock(comm,dof,count,idx,&to);
519:     PetscFree(idx);
520:   }

522:   /* determine who lies on each side of use stored in    n24 n25 n26
523:                                                          n21 n22 n23
524:                                                          n18 n19 n20

526:                                                          n15 n16 n17
527:                                                          n12     n14
528:                                                          n9  n10 n11

530:                                                          n6  n7  n8
531:                                                          n3  n4  n5
532:                                                          n0  n1  n2
533:   */
534: 
535:   /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
536: 
537:   /* Assume Nodes are Internal to the Cube */
538: 
539:   n0  = rank - m*n - m - 1;
540:   n1  = rank - m*n - m;
541:   n2  = rank - m*n - m + 1;
542:   n3  = rank - m*n -1;
543:   n4  = rank - m*n;
544:   n5  = rank - m*n + 1;
545:   n6  = rank - m*n + m - 1;
546:   n7  = rank - m*n + m;
547:   n8  = rank - m*n + m + 1;

549:   n9  = rank - m - 1;
550:   n10 = rank - m;
551:   n11 = rank - m + 1;
552:   n12 = rank - 1;
553:   n14 = rank + 1;
554:   n15 = rank + m - 1;
555:   n16 = rank + m;
556:   n17 = rank + m + 1;

558:   n18 = rank + m*n - m - 1;
559:   n19 = rank + m*n - m;
560:   n20 = rank + m*n - m + 1;
561:   n21 = rank + m*n - 1;
562:   n22 = rank + m*n;
563:   n23 = rank + m*n + 1;
564:   n24 = rank + m*n + m - 1;
565:   n25 = rank + m*n + m;
566:   n26 = rank + m*n + m + 1;

568:   /* Assume Pieces are on Faces of Cube */

570:   if (xs == 0) { /* First assume not corner or edge */
571:     n0  = rank       -1 - (m*n);
572:     n3  = rank + m   -1 - (m*n);
573:     n6  = rank + 2*m -1 - (m*n);
574:     n9  = rank       -1;
575:     n12 = rank + m   -1;
576:     n15 = rank + 2*m -1;
577:     n18 = rank       -1 + (m*n);
578:     n21 = rank + m   -1 + (m*n);
579:     n24 = rank + 2*m -1 + (m*n);
580:    }

582:   if (xe == M*dof) { /* First assume not corner or edge */
583:     n2  = rank -2*m +1 - (m*n);
584:     n5  = rank - m  +1 - (m*n);
585:     n8  = rank      +1 - (m*n);
586:     n11 = rank -2*m +1;
587:     n14 = rank - m  +1;
588:     n17 = rank      +1;
589:     n20 = rank -2*m +1 + (m*n);
590:     n23 = rank - m  +1 + (m*n);
591:     n26 = rank      +1 + (m*n);
592:   }

594:   if (ys==0) { /* First assume not corner or edge */
595:     n0  = rank + m * (n-1) -1 - (m*n);
596:     n1  = rank + m * (n-1)    - (m*n);
597:     n2  = rank + m * (n-1) +1 - (m*n);
598:     n9  = rank + m * (n-1) -1;
599:     n10 = rank + m * (n-1);
600:     n11 = rank + m * (n-1) +1;
601:     n18 = rank + m * (n-1) -1 + (m*n);
602:     n19 = rank + m * (n-1)    + (m*n);
603:     n20 = rank + m * (n-1) +1 + (m*n);
604:   }

606:   if (ye == N) { /* First assume not corner or edge */
607:     n6  = rank - m * (n-1) -1 - (m*n);
608:     n7  = rank - m * (n-1)    - (m*n);
609:     n8  = rank - m * (n-1) +1 - (m*n);
610:     n15 = rank - m * (n-1) -1;
611:     n16 = rank - m * (n-1);
612:     n17 = rank - m * (n-1) +1;
613:     n24 = rank - m * (n-1) -1 + (m*n);
614:     n25 = rank - m * (n-1)    + (m*n);
615:     n26 = rank - m * (n-1) +1 + (m*n);
616:   }
617: 
618:   if (zs == 0) { /* First assume not corner or edge */
619:     n0 = size - (m*n) + rank - m - 1;
620:     n1 = size - (m*n) + rank - m;
621:     n2 = size - (m*n) + rank - m + 1;
622:     n3 = size - (m*n) + rank - 1;
623:     n4 = size - (m*n) + rank;
624:     n5 = size - (m*n) + rank + 1;
625:     n6 = size - (m*n) + rank + m - 1;
626:     n7 = size - (m*n) + rank + m ;
627:     n8 = size - (m*n) + rank + m + 1;
628:   }

630:   if (ze == P) { /* First assume not corner or edge */
631:     n18 = (m*n) - (size-rank) - m - 1;
632:     n19 = (m*n) - (size-rank) - m;
633:     n20 = (m*n) - (size-rank) - m + 1;
634:     n21 = (m*n) - (size-rank) - 1;
635:     n22 = (m*n) - (size-rank);
636:     n23 = (m*n) - (size-rank) + 1;
637:     n24 = (m*n) - (size-rank) + m - 1;
638:     n25 = (m*n) - (size-rank) + m;
639:     n26 = (m*n) - (size-rank) + m + 1;
640:   }

642:   if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
643:     n0 = size - m*n + rank + m-1 - m;
644:     n3 = size - m*n + rank + m-1;
645:     n6 = size - m*n + rank + m-1 + m;
646:   }
647: 
648:   if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
649:     n18 = m*n - (size - rank) + m-1 - m;
650:     n21 = m*n - (size - rank) + m-1;
651:     n24 = m*n - (size - rank) + m-1 + m;
652:   }

654:   if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
655:     n0  = rank + m*n -1 - m*n;
656:     n9  = rank + m*n -1;
657:     n18 = rank + m*n -1 + m*n;
658:   }

660:   if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
661:     n6  = rank - m*(n-1) + m-1 - m*n;
662:     n15 = rank - m*(n-1) + m-1;
663:     n24 = rank - m*(n-1) + m-1 + m*n;
664:   }

666:   if ((xe==M*dof) && (zs==0)) { /* Assume an edge, not corner */
667:     n2 = size - (m*n-rank) - (m-1) - m;
668:     n5 = size - (m*n-rank) - (m-1);
669:     n8 = size - (m*n-rank) - (m-1) + m;
670:   }

672:   if ((xe==M*dof) && (ze==P)) { /* Assume an edge, not corner */
673:     n20 = m*n - (size - rank) - (m-1) - m;
674:     n23 = m*n - (size - rank) - (m-1);
675:     n26 = m*n - (size - rank) - (m-1) + m;
676:   }

678:   if ((xe==M*dof) && (ys==0)) { /* Assume an edge, not corner */
679:     n2  = rank + m*(n-1) - (m-1) - m*n;
680:     n11 = rank + m*(n-1) - (m-1);
681:     n20 = rank + m*(n-1) - (m-1) + m*n;
682:   }

684:   if ((xe==M*dof) && (ye==N)) { /* Assume an edge, not corner */
685:     n8  = rank - m*n +1 - m*n;
686:     n17 = rank - m*n +1;
687:     n26 = rank - m*n +1 + m*n;
688:   }

690:   if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
691:     n0 = size - m + rank -1;
692:     n1 = size - m + rank;
693:     n2 = size - m + rank +1;
694:   }

696:   if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
697:     n18 = m*n - (size - rank) + m*(n-1) -1;
698:     n19 = m*n - (size - rank) + m*(n-1);
699:     n20 = m*n - (size - rank) + m*(n-1) +1;
700:   }

702:   if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
703:     n6 = size - (m*n-rank) - m * (n-1) -1;
704:     n7 = size - (m*n-rank) - m * (n-1);
705:     n8 = size - (m*n-rank) - m * (n-1) +1;
706:   }

708:   if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
709:     n24 = rank - (size-m) -1;
710:     n25 = rank - (size-m);
711:     n26 = rank - (size-m) +1;
712:   }

714:   /* Check for Corners */
715:   if ((xs==0)   && (ys==0) && (zs==0)) { n0  = size -1;}
716:   if ((xs==0)   && (ys==0) && (ze==P)) { n18 = m*n-1;}
717:   if ((xs==0)   && (ye==N) && (zs==0)) { n6  = (size-1)-m*(n-1);}
718:   if ((xs==0)   && (ye==N) && (ze==P)) { n24 = m-1;}
719:   if ((xe==M*dof) && (ys==0) && (zs==0)) { n2  = size-m;}
720:   if ((xe==M*dof) && (ys==0) && (ze==P)) { n20 = m*n-m;}
721:   if ((xe==M*dof) && (ye==N) && (zs==0)) { n8  = size-m*n;}
722:   if ((xe==M*dof) && (ye==N) && (ze==P)) { n26 = 0;}

724:   /* Check for when not X,Y, and Z Periodic */

726:   /* If not X periodic */
727:   if ((wrap != DA_XPERIODIC)  && (wrap != DA_XYPERIODIC) &&
728:      (wrap != DA_XZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
729:     if (xs==0)   {n0  = n3  = n6  = n9  = n12 = n15 = n18 = n21 = n24 = -2;}
730:     if (xe==M*dof) {n2  = n5  = n8  = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
731:   }

733:   /* If not Y periodic */
734:   if ((wrap != DA_YPERIODIC)  && (wrap != DA_XYPERIODIC) &&
735:       (wrap != DA_YZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
736:     if (ys==0)   {n0  = n1  = n2  = n9  = n10 = n11 = n18 = n19 = n20 = -2;}
737:     if (ye==N)   {n6  = n7  = n8  = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
738:   }

740:   /* If not Z periodic */
741:   if ((wrap != DA_ZPERIODIC)  && (wrap != DA_XZPERIODIC) &&
742:       (wrap != DA_YZPERIODIC) && (wrap != DA_XYZPERIODIC)) {
743:     if (zs==0)   {n0  = n1  = n2  = n3  = n4  = n5  = n6  = n7  = n8  = -2;}
744:     if (ze==P)   {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
745:   }

747:   /* If star stencil then delete the corner neighbors */
748:   if (stencil_type == DA_STENCIL_STAR) {
749:      /* save information about corner neighbors */
750:      sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
751:      sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
752:      sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
753:      sn26 = n26;
754:      n0  = n1  = n2  = n3  = n5  = n6  = n7  = n8  = n9  = n11 =
755:      n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
756:   }


759:   PetscMalloc((Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt),&idx);
760:   PetscLogObjectMemory(da,(Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt));

762:   nn = 0;

764:   /* Bottom Level */
765:   for (k=0; k<s_z; k++) {
766:     for (i=1; i<=s_y; i++) {
767:       if (n0 >= 0) { /* left below */
768:         x_t = lx[n0 % m]*dof;
769:         y_t = ly[(n0 % (m*n))/m];
770:         z_t = lz[n0 / (m*n)];
771:         s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
772:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
773:       }
774:       if (n1 >= 0) { /* directly below */
775:         x_t = x;
776:         y_t = ly[(n1 % (m*n))/m];
777:         z_t = lz[n1 / (m*n)];
778:         s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
779:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
780:       }
781:       if (n2 >= 0) { /* right below */
782:         x_t = lx[n2 % m]*dof;
783:         y_t = ly[(n2 % (m*n))/m];
784:         z_t = lz[n2 / (m*n)];
785:         s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
786:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
787:       }
788:     }

790:     for (i=0; i<y; i++) {
791:       if (n3 >= 0) { /* directly left */
792:         x_t = lx[n3 % m]*dof;
793:         y_t = y;
794:         z_t = lz[n3 / (m*n)];
795:         s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
796:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
797:       }

799:       if (n4 >= 0) { /* middle */
800:         x_t = x;
801:         y_t = y;
802:         z_t = lz[n4 / (m*n)];
803:         s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
804:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
805:       }

807:       if (n5 >= 0) { /* directly right */
808:         x_t = lx[n5 % m]*dof;
809:         y_t = y;
810:         z_t = lz[n5 / (m*n)];
811:         s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
812:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
813:       }
814:     }

816:     for (i=1; i<=s_y; i++) {
817:       if (n6 >= 0) { /* left above */
818:         x_t = lx[n6 % m]*dof;
819:         y_t = ly[(n6 % (m*n))/m];
820:         z_t = lz[n6 / (m*n)];
821:         s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
822:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
823:       }
824:       if (n7 >= 0) { /* directly above */
825:         x_t = x;
826:         y_t = ly[(n7 % (m*n))/m];
827:         z_t = lz[n7 / (m*n)];
828:         s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
829:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
830:       }
831:       if (n8 >= 0) { /* right above */
832:         x_t = lx[n8 % m]*dof;
833:         y_t = ly[(n8 % (m*n))/m];
834:         z_t = lz[n8 / (m*n)];
835:         s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
836:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
837:       }
838:     }
839:   }

841:   /* Middle Level */
842:   for (k=0; k<z; k++) {
843:     for (i=1; i<=s_y; i++) {
844:       if (n9 >= 0) { /* left below */
845:         x_t = lx[n9 % m]*dof;
846:         y_t = ly[(n9 % (m*n))/m];
847:         /* z_t = z; */
848:         s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
849:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
850:       }
851:       if (n10 >= 0) { /* directly below */
852:         x_t = x;
853:         y_t = ly[(n10 % (m*n))/m];
854:         /* z_t = z; */
855:         s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
856:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
857:       }
858:       if (n11 >= 0) { /* right below */
859:         x_t = lx[n11 % m]*dof;
860:         y_t = ly[(n11 % (m*n))/m];
861:         /* z_t = z; */
862:         s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
863:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
864:       }
865:     }

867:     for (i=0; i<y; i++) {
868:       if (n12 >= 0) { /* directly left */
869:         x_t = lx[n12 % m]*dof;
870:         y_t = y;
871:         /* z_t = z; */
872:         s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
873:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
874:       }

876:       /* Interior */
877:       s_t = bases[rank] + i*x + k*x*y;
878:       for (j=0; j<x; j++) { idx[nn++] = s_t++;}

880:       if (n14 >= 0) { /* directly right */
881:         x_t = lx[n14 % m]*dof;
882:         y_t = y;
883:         /* z_t = z; */
884:         s_t = bases[n14] + i*x_t + k*x_t*y_t;
885:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
886:       }
887:     }

889:     for (i=1; i<=s_y; i++) {
890:       if (n15 >= 0) { /* left above */
891:         x_t = lx[n15 % m]*dof;
892:         y_t = ly[(n15 % (m*n))/m];
893:         /* z_t = z; */
894:         s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
895:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
896:       }
897:       if (n16 >= 0) { /* directly above */
898:         x_t = x;
899:         y_t = ly[(n16 % (m*n))/m];
900:         /* z_t = z; */
901:         s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
902:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
903:       }
904:       if (n17 >= 0) { /* right above */
905:         x_t = lx[n17 % m]*dof;
906:         y_t = ly[(n17 % (m*n))/m];
907:         /* z_t = z; */
908:         s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
909:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
910:       }
911:     }
912:   }
913: 
914:   /* Upper Level */
915:   for (k=0; k<s_z; k++) {
916:     for (i=1; i<=s_y; i++) {
917:       if (n18 >= 0) { /* left below */
918:         x_t = lx[n18 % m]*dof;
919:         y_t = ly[(n18 % (m*n))/m];
920:         /* z_t = lz[n18 / (m*n)]; */
921:         s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
922:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
923:       }
924:       if (n19 >= 0) { /* directly below */
925:         x_t = x;
926:         y_t = ly[(n19 % (m*n))/m];
927:         /* z_t = lz[n19 / (m*n)]; */
928:         s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
929:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
930:       }
931:       if (n20 >= 0) { /* right below */
932:         x_t = lx[n20 % m]*dof;
933:         y_t = ly[(n20 % (m*n))/m];
934:         /* z_t = lz[n20 / (m*n)]; */
935:         s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
936:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
937:       }
938:     }

940:     for (i=0; i<y; i++) {
941:       if (n21 >= 0) { /* directly left */
942:         x_t = lx[n21 % m]*dof;
943:         y_t = y;
944:         /* z_t = lz[n21 / (m*n)]; */
945:         s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
946:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
947:       }

949:       if (n22 >= 0) { /* middle */
950:         x_t = x;
951:         y_t = y;
952:         /* z_t = lz[n22 / (m*n)]; */
953:         s_t = bases[n22] + i*x_t + k*x_t*y_t;
954:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
955:       }

957:       if (n23 >= 0) { /* directly right */
958:         x_t = lx[n23 % m]*dof;
959:         y_t = y;
960:         /* z_t = lz[n23 / (m*n)]; */
961:         s_t = bases[n23] + i*x_t + k*x_t*y_t;
962:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
963:       }
964:     }

966:     for (i=1; i<=s_y; i++) {
967:       if (n24 >= 0) { /* left above */
968:         x_t = lx[n24 % m]*dof;
969:         y_t = ly[(n24 % (m*n))/m];
970:         /* z_t = lz[n24 / (m*n)]; */
971:         s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
972:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
973:       }
974:       if (n25 >= 0) { /* directly above */
975:         x_t = x;
976:         y_t = ly[(n25 % (m*n))/m];
977:         /* z_t = lz[n25 / (m*n)]; */
978:         s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
979:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
980:       }
981:       if (n26 >= 0) { /* right above */
982:         x_t = lx[n26 % m]*dof;
983:         y_t = ly[(n26 % (m*n))/m];
984:         /* z_t = lz[n26 / (m*n)]; */
985:         s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
986:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
987:       }
988:     }
989:   }
990:   base = bases[rank];
991:   {
992:     PetscInt nnn = nn/dof,*iidx;
993:     PetscMalloc(nnn*sizeof(PetscInt),&iidx);
994:     for (i=0; i<nnn; i++) {
995:       iidx[i] = idx[dof*i];
996:     }
997:     ISCreateBlock(comm,dof,nnn,iidx,&from);
998:     PetscFree(iidx);
999:   }
1000:   VecScatterCreate(global,from,local,to,&gtol);
1001:   PetscLogObjectParent(da,gtol);
1002:   PetscLogObjectParent(da,to);
1003:   PetscLogObjectParent(da,from);
1004:   ISDestroy(to);
1005:   ISDestroy(from);
1006:   da->stencil_type = stencil_type;
1007:   da->M  = M;  da->N  = N; da->P = P;
1008:   da->m  = m;  da->n  = n; da->p = p;
1009:   da->w  = dof;  da->s  = s;
1010:   da->xs = xs; da->xe = xe; da->ys = ys; da->ye = ye; da->zs = zs; da->ze = ze;
1011:   da->Xs = Xs; da->Xe = Xe; da->Ys = Ys; da->Ye = Ye; da->Zs = Zs; da->Ze = Ze;

1013:   VecDestroy(local);
1014:   VecDestroy(global);

1016:   if (stencil_type == DA_STENCIL_STAR) {
1017:     /*
1018:         Recompute the local to global mappings, this time keeping the 
1019:       information about the cross corner processor numbers.
1020:     */
1021:     n0  = sn0;  n1  = sn1;  n2  = sn2;  n3  = sn3;  n5  = sn5;  n6  = sn6; n7 = sn7;
1022:     n8  = sn8;  n9  = sn9;  n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1023:     n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1024:     n26 = sn26;

1026:     nn = 0;

1028:     /* Bottom Level */
1029:     for (k=0; k<s_z; k++) {
1030:       for (i=1; i<=s_y; i++) {
1031:         if (n0 >= 0) { /* left below */
1032:           x_t = lx[n0 % m]*dof;
1033:           y_t = ly[(n0 % (m*n))/m];
1034:           z_t = lz[n0 / (m*n)];
1035:           s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1036:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1037:         }
1038:         if (n1 >= 0) { /* directly below */
1039:           x_t = x;
1040:           y_t = ly[(n1 % (m*n))/m];
1041:           z_t = lz[n1 / (m*n)];
1042:           s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1043:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1044:         }
1045:         if (n2 >= 0) { /* right below */
1046:           x_t = lx[n2 % m]*dof;
1047:           y_t = ly[(n2 % (m*n))/m];
1048:           z_t = lz[n2 / (m*n)];
1049:           s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1050:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1051:         }
1052:       }

1054:       for (i=0; i<y; i++) {
1055:         if (n3 >= 0) { /* directly left */
1056:           x_t = lx[n3 % m]*dof;
1057:           y_t = y;
1058:           z_t = lz[n3 / (m*n)];
1059:           s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1060:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1061:         }

1063:         if (n4 >= 0) { /* middle */
1064:           x_t = x;
1065:           y_t = y;
1066:           z_t = lz[n4 / (m*n)];
1067:           s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1068:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1069:         }

1071:         if (n5 >= 0) { /* directly right */
1072:           x_t = lx[n5 % m]*dof;
1073:           y_t = y;
1074:           z_t = lz[n5 / (m*n)];
1075:           s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1076:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1077:         }
1078:       }

1080:       for (i=1; i<=s_y; i++) {
1081:         if (n6 >= 0) { /* left above */
1082:           x_t = lx[n6 % m]*dof;
1083:           y_t = ly[(n6 % (m*n))/m];
1084:           z_t = lz[n6 / (m*n)];
1085:           s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1086:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1087:         }
1088:         if (n7 >= 0) { /* directly above */
1089:           x_t = x;
1090:           y_t = ly[(n7 % (m*n))/m];
1091:           z_t = lz[n7 / (m*n)];
1092:           s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1093:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1094:         }
1095:         if (n8 >= 0) { /* right above */
1096:           x_t = lx[n8 % m]*dof;
1097:           y_t = ly[(n8 % (m*n))/m];
1098:           z_t = lz[n8 / (m*n)];
1099:           s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1100:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1101:         }
1102:       }
1103:     }

1105:     /* Middle Level */
1106:     for (k=0; k<z; k++) {
1107:       for (i=1; i<=s_y; i++) {
1108:         if (n9 >= 0) { /* left below */
1109:           x_t = lx[n9 % m]*dof;
1110:           y_t = ly[(n9 % (m*n))/m];
1111:           /* z_t = z; */
1112:           s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1113:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1114:         }
1115:         if (n10 >= 0) { /* directly below */
1116:           x_t = x;
1117:           y_t = ly[(n10 % (m*n))/m];
1118:           /* z_t = z; */
1119:           s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1120:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1121:         }
1122:         if (n11 >= 0) { /* right below */
1123:           x_t = lx[n11 % m]*dof;
1124:           y_t = ly[(n11 % (m*n))/m];
1125:           /* z_t = z; */
1126:           s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1127:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1128:         }
1129:       }

1131:       for (i=0; i<y; i++) {
1132:         if (n12 >= 0) { /* directly left */
1133:           x_t = lx[n12 % m]*dof;
1134:           y_t = y;
1135:           /* z_t = z; */
1136:           s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1137:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1138:         }

1140:         /* Interior */
1141:         s_t = bases[rank] + i*x + k*x*y;
1142:         for (j=0; j<x; j++) { idx[nn++] = s_t++;}

1144:         if (n14 >= 0) { /* directly right */
1145:           x_t = lx[n14 % m]*dof;
1146:           y_t = y;
1147:           /* z_t = z; */
1148:           s_t = bases[n14] + i*x_t + k*x_t*y_t;
1149:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1150:         }
1151:       }

1153:       for (i=1; i<=s_y; i++) {
1154:         if (n15 >= 0) { /* left above */
1155:           x_t = lx[n15 % m]*dof;
1156:           y_t = ly[(n15 % (m*n))/m];
1157:           /* z_t = z; */
1158:           s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1159:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1160:         }
1161:         if (n16 >= 0) { /* directly above */
1162:           x_t = x;
1163:           y_t = ly[(n16 % (m*n))/m];
1164:           /* z_t = z; */
1165:           s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1166:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1167:         }
1168:         if (n17 >= 0) { /* right above */
1169:           x_t = lx[n17 % m]*dof;
1170:           y_t = ly[(n17 % (m*n))/m];
1171:           /* z_t = z; */
1172:           s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1173:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1174:         }
1175:       }
1176:     }
1177: 
1178:     /* Upper Level */
1179:     for (k=0; k<s_z; k++) {
1180:       for (i=1; i<=s_y; i++) {
1181:         if (n18 >= 0) { /* left below */
1182:           x_t = lx[n18 % m]*dof;
1183:           y_t = ly[(n18 % (m*n))/m];
1184:           /* z_t = lz[n18 / (m*n)]; */
1185:           s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1186:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1187:         }
1188:         if (n19 >= 0) { /* directly below */
1189:           x_t = x;
1190:           y_t = ly[(n19 % (m*n))/m];
1191:           /* z_t = lz[n19 / (m*n)]; */
1192:           s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1193:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1194:         }
1195:         if (n20 >= 0) { /* right below */
1196:           x_t = lx[n20 % m]*dof;
1197:           y_t = ly[(n20 % (m*n))/m];
1198:           /* z_t = lz[n20 / (m*n)]; */
1199:           s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1200:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1201:         }
1202:       }

1204:       for (i=0; i<y; i++) {
1205:         if (n21 >= 0) { /* directly left */
1206:           x_t = lx[n21 % m]*dof;
1207:           y_t = y;
1208:           /* z_t = lz[n21 / (m*n)]; */
1209:           s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1210:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1211:         }

1213:         if (n22 >= 0) { /* middle */
1214:           x_t = x;
1215:           y_t = y;
1216:           /* z_t = lz[n22 / (m*n)]; */
1217:           s_t = bases[n22] + i*x_t + k*x_t*y_t;
1218:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1219:         }

1221:         if (n23 >= 0) { /* directly right */
1222:           x_t = lx[n23 % m]*dof;
1223:           y_t = y;
1224:           /* z_t = lz[n23 / (m*n)]; */
1225:           s_t = bases[n23] + i*x_t + k*x_t*y_t;
1226:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1227:         }
1228:       }

1230:       for (i=1; i<=s_y; i++) {
1231:         if (n24 >= 0) { /* left above */
1232:           x_t = lx[n24 % m]*dof;
1233:           y_t = ly[(n24 % (m*n))/m];
1234:           /* z_t = lz[n24 / (m*n)]; */
1235:           s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1236:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1237:         }
1238:         if (n25 >= 0) { /* directly above */
1239:           x_t = x;
1240:           y_t = ly[(n25 % (m*n))/m];
1241:           /* z_t = lz[n25 / (m*n)]; */
1242:           s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1243:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1244:         }
1245:         if (n26 >= 0) { /* right above */
1246:           x_t = lx[n26 % m]*dof;
1247:           y_t = ly[(n26 % (m*n))/m];
1248:           /* z_t = lz[n26 / (m*n)]; */
1249:           s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1250:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1251:         }
1252:       }
1253:     }
1254:   }
1255:   /* redo idx to include "missing" ghost points */
1256:   /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
1257: 
1258:   /* Assume Nodes are Internal to the Cube */
1259: 
1260:   n0  = rank - m*n - m - 1;
1261:   n1  = rank - m*n - m;
1262:   n2  = rank - m*n - m + 1;
1263:   n3  = rank - m*n -1;
1264:   n4  = rank - m*n;
1265:   n5  = rank - m*n + 1;
1266:   n6  = rank - m*n + m - 1;
1267:   n7  = rank - m*n + m;
1268:   n8  = rank - m*n + m + 1;

1270:   n9  = rank - m - 1;
1271:   n10 = rank - m;
1272:   n11 = rank - m + 1;
1273:   n12 = rank - 1;
1274:   n14 = rank + 1;
1275:   n15 = rank + m - 1;
1276:   n16 = rank + m;
1277:   n17 = rank + m + 1;

1279:   n18 = rank + m*n - m - 1;
1280:   n19 = rank + m*n - m;
1281:   n20 = rank + m*n - m + 1;
1282:   n21 = rank + m*n - 1;
1283:   n22 = rank + m*n;
1284:   n23 = rank + m*n + 1;
1285:   n24 = rank + m*n + m - 1;
1286:   n25 = rank + m*n + m;
1287:   n26 = rank + m*n + m + 1;

1289:   /* Assume Pieces are on Faces of Cube */

1291:   if (xs == 0) { /* First assume not corner or edge */
1292:     n0  = rank       -1 - (m*n);
1293:     n3  = rank + m   -1 - (m*n);
1294:     n6  = rank + 2*m -1 - (m*n);
1295:     n9  = rank       -1;
1296:     n12 = rank + m   -1;
1297:     n15 = rank + 2*m -1;
1298:     n18 = rank       -1 + (m*n);
1299:     n21 = rank + m   -1 + (m*n);
1300:     n24 = rank + 2*m -1 + (m*n);
1301:    }

1303:   if (xe == M*dof) { /* First assume not corner or edge */
1304:     n2  = rank -2*m +1 - (m*n);
1305:     n5  = rank - m  +1 - (m*n);
1306:     n8  = rank      +1 - (m*n);
1307:     n11 = rank -2*m +1;
1308:     n14 = rank - m  +1;
1309:     n17 = rank      +1;
1310:     n20 = rank -2*m +1 + (m*n);
1311:     n23 = rank - m  +1 + (m*n);
1312:     n26 = rank      +1 + (m*n);
1313:   }

1315:   if (ys==0) { /* First assume not corner or edge */
1316:     n0  = rank + m * (n-1) -1 - (m*n);
1317:     n1  = rank + m * (n-1)    - (m*n);
1318:     n2  = rank + m * (n-1) +1 - (m*n);
1319:     n9  = rank + m * (n-1) -1;
1320:     n10 = rank + m * (n-1);
1321:     n11 = rank + m * (n-1) +1;
1322:     n18 = rank + m * (n-1) -1 + (m*n);
1323:     n19 = rank + m * (n-1)    + (m*n);
1324:     n20 = rank + m * (n-1) +1 + (m*n);
1325:   }

1327:   if (ye == N) { /* First assume not corner or edge */
1328:     n6  = rank - m * (n-1) -1 - (m*n);
1329:     n7  = rank - m * (n-1)    - (m*n);
1330:     n8  = rank - m * (n-1) +1 - (m*n);
1331:     n15 = rank - m * (n-1) -1;
1332:     n16 = rank - m * (n-1);
1333:     n17 = rank - m * (n-1) +1;
1334:     n24 = rank - m * (n-1) -1 + (m*n);
1335:     n25 = rank - m * (n-1)    + (m*n);
1336:     n26 = rank - m * (n-1) +1 + (m*n);
1337:   }
1338: 
1339:   if (zs == 0) { /* First assume not corner or edge */
1340:     n0 = size - (m*n) + rank - m - 1;
1341:     n1 = size - (m*n) + rank - m;
1342:     n2 = size - (m*n) + rank - m + 1;
1343:     n3 = size - (m*n) + rank - 1;
1344:     n4 = size - (m*n) + rank;
1345:     n5 = size - (m*n) + rank + 1;
1346:     n6 = size - (m*n) + rank + m - 1;
1347:     n7 = size - (m*n) + rank + m ;
1348:     n8 = size - (m*n) + rank + m + 1;
1349:   }

1351:   if (ze == P) { /* First assume not corner or edge */
1352:     n18 = (m*n) - (size-rank) - m - 1;
1353:     n19 = (m*n) - (size-rank) - m;
1354:     n20 = (m*n) - (size-rank) - m + 1;
1355:     n21 = (m*n) - (size-rank) - 1;
1356:     n22 = (m*n) - (size-rank);
1357:     n23 = (m*n) - (size-rank) + 1;
1358:     n24 = (m*n) - (size-rank) + m - 1;
1359:     n25 = (m*n) - (size-rank) + m;
1360:     n26 = (m*n) - (size-rank) + m + 1;
1361:   }

1363:   if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
1364:     n0 = size - m*n + rank + m-1 - m;
1365:     n3 = size - m*n + rank + m-1;
1366:     n6 = size - m*n + rank + m-1 + m;
1367:   }
1368: 
1369:   if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
1370:     n18 = m*n - (size - rank) + m-1 - m;
1371:     n21 = m*n - (size - rank) + m-1;
1372:     n24 = m*n - (size - rank) + m-1 + m;
1373:   }

1375:   if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
1376:     n0  = rank + m*n -1 - m*n;
1377:     n9  = rank + m*n -1;
1378:     n18 = rank + m*n -1 + m*n;
1379:   }

1381:   if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
1382:     n6  = rank - m*(n-1) + m-1 - m*n;
1383:     n15 = rank - m*(n-1) + m-1;
1384:     n24 = rank - m*(n-1) + m-1 + m*n;
1385:   }

1387:   if ((xe==M*dof) && (zs==0)) { /* Assume an edge, not corner */
1388:     n2 = size - (m*n-rank) - (m-1) - m;
1389:     n5 = size - (m*n-rank) - (m-1);
1390:     n8 = size - (m*n-rank) - (m-1) + m;
1391:   }

1393:   if ((xe==M*dof) && (ze==P)) { /* Assume an edge, not corner */
1394:     n20 = m*n - (size - rank) - (m-1) - m;
1395:     n23 = m*n - (size - rank) - (m-1);
1396:     n26 = m*n - (size - rank) - (m-1) + m;
1397:   }

1399:   if ((xe==M*dof) && (ys==0)) { /* Assume an edge, not corner */
1400:     n2  = rank + m*(n-1) - (m-1) - m*n;
1401:     n11 = rank + m*(n-1) - (m-1);
1402:     n20 = rank + m*(n-1) - (m-1) + m*n;
1403:   }

1405:   if ((xe==M*dof) && (ye==N)) { /* Assume an edge, not corner */
1406:     n8  = rank - m*n +1 - m*n;
1407:     n17 = rank - m*n +1;
1408:     n26 = rank - m*n +1 + m*n;
1409:   }

1411:   if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
1412:     n0 = size - m + rank -1;
1413:     n1 = size - m + rank;
1414:     n2 = size - m + rank +1;
1415:   }

1417:   if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
1418:     n18 = m*n - (size - rank) + m*(n-1) -1;
1419:     n19 = m*n - (size - rank) + m*(n-1);
1420:     n20 = m*n - (size - rank) + m*(n-1) +1;
1421:   }

1423:   if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
1424:     n6 = size - (m*n-rank) - m * (n-1) -1;
1425:     n7 = size - (m*n-rank) - m * (n-1);
1426:     n8 = size - (m*n-rank) - m * (n-1) +1;
1427:   }

1429:   if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
1430:     n24 = rank - (size-m) -1;
1431:     n25 = rank - (size-m);
1432:     n26 = rank - (size-m) +1;
1433:   }

1435:   /* Check for Corners */
1436:   if ((xs==0)   && (ys==0) && (zs==0)) { n0  = size -1;}
1437:   if ((xs==0)   && (ys==0) && (ze==P)) { n18 = m*n-1;}
1438:   if ((xs==0)   && (ye==N) && (zs==0)) { n6  = (size-1)-m*(n-1);}
1439:   if ((xs==0)   && (ye==N) && (ze==P)) { n24 = m-1;}
1440:   if ((xe==M*dof) && (ys==0) && (zs==0)) { n2  = size-m;}
1441:   if ((xe==M*dof) && (ys==0) && (ze==P)) { n20 = m*n-m;}
1442:   if ((xe==M*dof) && (ye==N) && (zs==0)) { n8  = size-m*n;}
1443:   if ((xe==M*dof) && (ye==N) && (ze==P)) { n26 = 0;}

1445:   /* Check for when not X,Y, and Z Periodic */

1447:   /* If not X periodic */
1448:   if (!DAXPeriodic(wrap)){
1449:     if (xs==0)   {n0  = n3  = n6  = n9  = n12 = n15 = n18 = n21 = n24 = -2;}
1450:     if (xe==M*dof) {n2  = n5  = n8  = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
1451:   }

1453:   /* If not Y periodic */
1454:   if (!DAYPeriodic(wrap)){
1455:     if (ys==0)   {n0  = n1  = n2  = n9  = n10 = n11 = n18 = n19 = n20 = -2;}
1456:     if (ye==N)   {n6  = n7  = n8  = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
1457:   }

1459:   /* If not Z periodic */
1460:   if (!DAZPeriodic(wrap)){
1461:     if (zs==0)   {n0  = n1  = n2  = n3  = n4  = n5  = n6  = n7  = n8  = -2;}
1462:     if (ze==P)   {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
1463:   }

1465:   nn = 0;

1467:   /* Bottom Level */
1468:   for (k=0; k<s_z; k++) {
1469:     for (i=1; i<=s_y; i++) {
1470:       if (n0 >= 0) { /* left below */
1471:         x_t = lx[n0 % m]*dof;
1472:         y_t = ly[(n0 % (m*n))/m];
1473:         z_t = lz[n0 / (m*n)];
1474:         s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t -s_x - (s_z-k-1)*x_t*y_t;
1475:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1476:       }
1477:       if (n1 >= 0) { /* directly below */
1478:         x_t = x;
1479:         y_t = ly[(n1 % (m*n))/m];
1480:         z_t = lz[n1 / (m*n)];
1481:         s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1482:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1483:       }
1484:       if (n2 >= 0) { /* right below */
1485:         x_t = lx[n2 % m]*dof;
1486:         y_t = ly[(n2 % (m*n))/m];
1487:         z_t = lz[n2 / (m*n)];
1488:         s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1489:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1490:       }
1491:     }

1493:     for (i=0; i<y; i++) {
1494:       if (n3 >= 0) { /* directly left */
1495:         x_t = lx[n3 % m]*dof;
1496:         y_t = y;
1497:         z_t = lz[n3 / (m*n)];
1498:         s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1499:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1500:       }

1502:       if (n4 >= 0) { /* middle */
1503:         x_t = x;
1504:         y_t = y;
1505:         z_t = lz[n4 / (m*n)];
1506:         s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1507:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1508:       }

1510:       if (n5 >= 0) { /* directly right */
1511:         x_t = lx[n5 % m]*dof;
1512:         y_t = y;
1513:         z_t = lz[n5 / (m*n)];
1514:         s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1515:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1516:       }
1517:     }

1519:     for (i=1; i<=s_y; i++) {
1520:       if (n6 >= 0) { /* left above */
1521:         x_t = lx[n6 % m]*dof;
1522:         y_t = ly[(n6 % (m*n))/m];
1523:         z_t = lz[n6 / (m*n)];
1524:         s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1525:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1526:       }
1527:       if (n7 >= 0) { /* directly above */
1528:         x_t = x;
1529:         y_t = ly[(n7 % (m*n))/m];
1530:         z_t = lz[n7 / (m*n)];
1531:         s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1532:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1533:       }
1534:       if (n8 >= 0) { /* right above */
1535:         x_t = lx[n8 % m]*dof;
1536:         y_t = ly[(n8 % (m*n))/m];
1537:         z_t = lz[n8 / (m*n)];
1538:         s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1539:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1540:       }
1541:     }
1542:   }

1544:   /* Middle Level */
1545:   for (k=0; k<z; k++) {
1546:     for (i=1; i<=s_y; i++) {
1547:       if (n9 >= 0) { /* left below */
1548:         x_t = lx[n9 % m]*dof;
1549:         y_t = ly[(n9 % (m*n))/m];
1550:         /* z_t = z; */
1551:         s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1552:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1553:       }
1554:       if (n10 >= 0) { /* directly below */
1555:         x_t = x;
1556:         y_t = ly[(n10 % (m*n))/m];
1557:         /* z_t = z; */
1558:         s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1559:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1560:       }
1561:       if (n11 >= 0) { /* right below */
1562:         x_t = lx[n11 % m]*dof;
1563:         y_t = ly[(n11 % (m*n))/m];
1564:         /* z_t = z; */
1565:         s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1566:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1567:       }
1568:     }

1570:     for (i=0; i<y; i++) {
1571:       if (n12 >= 0) { /* directly left */
1572:         x_t = lx[n12 % m]*dof;
1573:         y_t = y;
1574:         /* z_t = z; */
1575:         s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1576:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1577:       }

1579:       /* Interior */
1580:       s_t = bases[rank] + i*x + k*x*y;
1581:       for (j=0; j<x; j++) { idx[nn++] = s_t++;}

1583:       if (n14 >= 0) { /* directly right */
1584:         x_t = lx[n14 % m]*dof;
1585:         y_t = y;
1586:         /* z_t = z; */
1587:         s_t = bases[n14] + i*x_t + k*x_t*y_t;
1588:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1589:       }
1590:     }

1592:     for (i=1; i<=s_y; i++) {
1593:       if (n15 >= 0) { /* left above */
1594:         x_t = lx[n15 % m]*dof;
1595:         y_t = ly[(n15 % (m*n))/m];
1596:         /* z_t = z; */
1597:         s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1598:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1599:       }
1600:       if (n16 >= 0) { /* directly above */
1601:         x_t = x;
1602:         y_t = ly[(n16 % (m*n))/m];
1603:         /* z_t = z; */
1604:         s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1605:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1606:       }
1607:       if (n17 >= 0) { /* right above */
1608:         x_t = lx[n17 % m]*dof;
1609:         y_t = ly[(n17 % (m*n))/m];
1610:         /* z_t = z; */
1611:         s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1612:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1613:       }
1614:     }
1615:   }
1616: 
1617:   /* Upper Level */
1618:   for (k=0; k<s_z; k++) {
1619:     for (i=1; i<=s_y; i++) {
1620:       if (n18 >= 0) { /* left below */
1621:         x_t = lx[n18 % m]*dof;
1622:         y_t = ly[(n18 % (m*n))/m];
1623:         /* z_t = lz[n18 / (m*n)]; */
1624:         s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1625:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1626:       }
1627:       if (n19 >= 0) { /* directly below */
1628:         x_t = x;
1629:         y_t = ly[(n19 % (m*n))/m];
1630:         /* z_t = lz[n19 / (m*n)]; */
1631:         s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1632:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1633:       }
1634:       if (n20 >= 0) { /* right belodof */
1635:         x_t = lx[n20 % m]*dof;
1636:         y_t = ly[(n20 % (m*n))/m];
1637:         /* z_t = lz[n20 / (m*n)]; */
1638:         s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1639:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1640:       }
1641:     }

1643:     for (i=0; i<y; i++) {
1644:       if (n21 >= 0) { /* directly left */
1645:         x_t = lx[n21 % m]*dof;
1646:         y_t = y;
1647:         /* z_t = lz[n21 / (m*n)]; */
1648:         s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1649:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1650:       }

1652:       if (n22 >= 0) { /* middle */
1653:         x_t = x;
1654:         y_t = y;
1655:         /* z_t = lz[n22 / (m*n)]; */
1656:         s_t = bases[n22] + i*x_t + k*x_t*y_t;
1657:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1658:       }

1660:       if (n23 >= 0) { /* directly right */
1661:         x_t = lx[n23 % m]*dof;
1662:         y_t = y;
1663:         /* z_t = lz[n23 / (m*n)]; */
1664:         s_t = bases[n23] + i*x_t + k*x_t*y_t;
1665:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1666:       }
1667:     }

1669:     for (i=1; i<=s_y; i++) {
1670:       if (n24 >= 0) { /* left above */
1671:         x_t = lx[n24 % m]*dof;
1672:         y_t = ly[(n24 % (m*n))/m];
1673:         /* z_t = lz[n24 / (m*n)]; */
1674:         s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1675:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1676:       }
1677:       if (n25 >= 0) { /* directly above */
1678:         x_t = x;
1679:         y_t = ly[(n25 % (m*n))/m];
1680:         /* z_t = lz[n25 / (m*n)]; */
1681:         s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1682:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1683:       }
1684:       if (n26 >= 0) { /* right above */
1685:         x_t = lx[n26 % m]*dof;
1686:         y_t = ly[(n26 % (m*n))/m];
1687:         /* z_t = lz[n26 / (m*n)]; */
1688:         s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1689:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1690:       }
1691:     }
1692:   }
1693:   PetscFree(bases);
1694:   da->gtol      = gtol;
1695:   da->ltog      = ltog;
1696:   da->idx       = idx;
1697:   da->Nl        = nn;
1698:   da->base      = base;
1699:   da->ops->view = DAView_3d;
1700:   da->wrap      = wrap;
1701:   *inra = da;

1703:   /* 
1704:      Set the local to global ordering in the global vector, this allows use
1705:      of VecSetValuesLocal().
1706:   */
1707:   ISLocalToGlobalMappingCreateNC(comm,nn,idx,&da->ltogmap);
1708:   ISLocalToGlobalMappingBlock(da->ltogmap,da->w,&da->ltogmapb);
1709:   PetscLogObjectParent(da,da->ltogmap);

1711:   da->ltol = PETSC_NULL;
1712:   da->ao   = PETSC_NULL;

1714:   if (!flx) {
1715:     PetscMalloc(m*sizeof(PetscInt),&flx);
1716:     PetscMemcpy(flx,lx,m*sizeof(PetscInt));
1717:   }
1718:   if (!fly) {
1719:     PetscMalloc(n*sizeof(PetscInt),&fly);
1720:     PetscMemcpy(fly,ly,n*sizeof(PetscInt));
1721:   }
1722:   if (!flz) {
1723:     PetscMalloc(p*sizeof(PetscInt),&flz);
1724:     PetscMemcpy(flz,lz,p*sizeof(PetscInt));
1725:   }
1726:   da->lx = flx;
1727:   da->ly = fly;
1728:   da->lz = flz;

1730:   PetscOptionsHasName(PETSC_NULL,"-da_view",&flg1);
1731:   if (flg1) {DAView(da,PETSC_VIEWER_STDOUT_(da->comm));}
1732:   PetscOptionsHasName(PETSC_NULL,"-da_view_draw",&flg1);
1733:   if (flg1) {DAView(da,PETSC_VIEWER_DRAW_(da->comm));}
1734:   PetscOptionsHasName(PETSC_NULL,"-help",&flg1);
1735:   if (flg1) {DAPrintHelp(da);}
1736:   PetscPublishAll(da);

1738:   return(0);
1739: }

1741: /*@C
1742:    DACreate - Creates an object that will manage the communication of regular array data that is distributed across some processors
1743:        in 1, 2 or 3 dimensions

1745:    Collective on MPI_Comm

1747:    See the manual pages for the routines for each dimension.

1749:    Level: beginner

1751:    
1752: .keywords: distributed array, create, three-dimensional

1754: .seealso: DACreate1d(), DACreate2d(), DACreate3d()

1756: @*/
1757: PetscErrorCode PETSCDM_DLLEXPORT DACreate(MPI_Comm comm,PetscInt dim,DAPeriodicType wrap,DAStencilType stencil_type,PetscInt M,
1758:          PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,PetscInt *lx,PetscInt *ly,PetscInt *lz,DA *inra)
1759: {

1762:   if (dim == 3) {
1763:     DACreate3d(comm,wrap,stencil_type,M,N,P,m,n,p,dof,s,lx,ly,lz,inra);
1764:   } else if (dim == 2) {
1765:     DACreate2d(comm,wrap,stencil_type,M,N,m,n,dof,s,lx,ly,inra);
1766:   } else if (dim == 1) {
1767:     DACreate1d(comm,wrap,M,dof,s,lx,inra);
1768:   }
1769:   return(0);
1770: }