Some frequently and
not so frequently asked questions

about RX

(version 0.9)

Gert-Ludwig Ingold
(gert.ingold@physik.uni-augsburg.de)

Contents

1 General aspects of ReX

1.1 Thenameofthegame
1.2 Where do I get the latest version of R X? o Lo
1.3 How can I determine the version of RX running on my machine?
1.4 How canIaccessolder versionsof R X? oo
1.5 Does RX run under my favorite operating system?
1.6 Under which versions of Python will ReX run?
1.7 Does RX provide a GUI to view the produced image?
1.8 I am a Gnuplot user and want to try RZX. Where can I get some help?
1.9 Where can I get help if my question is not answered in this FAQ?
2 Python
2.1 Whatis Python? e
2.2 Where can I learn more about Python?
2.3 WhatdoIneedtoimportinordertouse ReX? L oL
2.4 What is a raw string and why should I know about it when using ReX?

3 General aspects of plotting with ReX

3.1

How do I generate multipage output? L

4 Plotting of graphs

4.1

4.2

43

General aspectso e e e e
4.1.1 How do I generate a graph from data as simply as possible?
4.1.2 How do I generate a graph of a function as simply as possible?
4.1.3 HowcanlIstack graphs?
414 HowcanlIplotgriddata?
4.1.5 How can I access points in problem coordinates of a graph?
AXIS PIOPETLIES . . . v v v v e i e e e e e e e e e e e e
4.2.1 How do I specify the tick increment?
422 Howdolplotthezeroline?
423 Howcanladdgridlinestoa graph?,
Dataproperties e e e e e
4.3.1 How do I choose the symbol and its attributes? ~ [cuancep|
4.3.2 How do I choose the color of the symbols?
4.3.3 HowdoIchoosethelinestyle?
4.3.4 How can I change the color of symbols or lines according to a palette? | NEw

4.3.5 How can I specify changing colors (or other attributes) for symbols or lines? [New

mailto:gert.ingold@physik.uni-augsburg.de
<gert.ingold@physik.uni-augsburg.de>
mailto:gert.ingold@physik.uni-augsburg.de

5 Other plotting tasks
How can I rotate teXt? e e e e e e
5.2 HowcanlIclipacanvas? [NEW| L e e

5.1

6 TeX and BTEX

6.1 General aspects e e e e e e e e e e e
6.1.1 Whatis TRX/ISIEX and why do Ineedit?
6.1.2 I don’t know anything about TEX and I&TEX. Where can I read something about it? .
6.1.3 Whatis CTAN?
6.1.4 Isthere support for ConTXt? L
6.2 TeXand EIEX commands useful for ReX oo oo oo oo
6.2.1 How do I get a specific symbol with TgX or IKTEX?
6.3 TeXand EIEX errors o o o e e e
6.3.1 Undefined control sequence \usepackage
6.3.2 Undefined control sequence \frac
6.3.3 Missing$inserted
6.3.4 Why do environments like itemize or eqnarray seem not to work?
6.3.5 Fontshape ‘OT1/xyz/m/n’ undefined
6.3.6 File... isnotavailable ornotreadable
6.3.7 No information for font ‘cmr10’ found in font mapping file
6.4 Fonts e
6.4.1 I want to use a font other than computer modern roman
6.4.2 CanluseaTrueType font with R X?
Acknowledgements

11
11
12

13

The following persons have in one way or the other, e.g. by asking good questions or providing answers,
contributed to this FAQ:
Walter Brisken, Pierre Joyot, Jorg Lehmann, John Owens, Michael Schindler, Gerhard Schmid, André

Wobst.

1 General aspects of ReX

1.1 The name of the game

Originally, the name R/X was constructed as a combination of Postscript, i.e. the first output format sup-
ported by ReX, Python, i.e. the language in which R/X is written, and TeX, i.e. the program which RX uses
for typesetting purposes. Actually, the title of this question is a tribute to TEX because it is taken from the
first chapter of the TEXbook! where the origin of the name TgX and its pronunciation are explained.

Despite the ties between TeX and RiX, their pronunciation is quite different. According to the developers
of ReX, it should be pronounced as [pyks]. Please do not pronounce it as [pyx] or [pyg].

1.2 Where do | get the latest version of ReX?

The current release of ReX (as well as older ones) is freely available from http://pyx.sourceforge.net
where also a CVS repository with the latest patches can be found. Possibly older versions of RX are
also available as package for various Linux distributions: see, for instance, http://packages.debian.
org/testing/python/python-pyx.html for information on the RX package in Debian GNU/Linux,
http://packages.gentoo.org/ebuilds/?pyx-0.7.1 for a Gentoo Linux ebuild, and http://www.
novell.com/products/linuxpackages/professional/python-pyx.html for the RiX package in the
SUSE LINUX professional distribution.

1.3 How can | determine the version of RZX running on my machine?

Start a python session (usually by typing python at the system prompt) and then type the following two
commands (>>> is the python prompt)

>>> import pyx
>>> pyx.__version__

1.4 How can | access older versions of ReX?

As at present it is not guaranteed that RX is backward compatible, it may be desirable to access an older
version of RyX instead of adapting older code to the current version of RX. In order to do that, one needs
the corresponding R’X package (see 1.2 if you need to download it), which should be unpacked below a
directory, e.g. /home/xyz/Python, where you want to keep the various RiX versions. This will result in
a subdirectory with a name like PyX-0.8 which contains the contents of the corresponding package. You
can then ask Python to first look in the appropriate directory before looking for the current version of R X
by inserting the following code (appropriately modified according to your needs) at the beginning of your
program before importing the R7X module:

import sys
sys.path.insert(0, "/home/xyz/Python/PyX-0.8")

Including appropriate lines even if the current version of RX is used, might turn out to be helpful when the
current version has become an old version (unless you have no difficulties determining the R/X version by
looking at your code).

If your operating system supports path expansion, you might use as an alternative:

import sys, os
sys.path.insert(0, os.path.expanduser("”~/Python/PyX-0.8"))

which will expand the tilde to your home directory.

Ip, Knuth, The TgXbook (Addison-Wesley, 1984)

http://pyx.sourceforge.net
http://packages.debian.org/testing/python/python-pyx.html
http://packages.debian.org/testing/python/python-pyx.html
http://packages.gentoo.org/ebuilds/?pyx-0.7.1
http://www.novell.com/products/linuxpackages/professional/python-pyx.html
http://www.novell.com/products/linuxpackages/professional/python-pyx.html

1.5 Does RX run under my favorite operating system?

Yes, if you have installed Python (72.1) and TgX (76.1.1). Both are available for a large variety of operating
systems so chances are pretty good that you will get RiX to work on your system.

1.6 Under which versions of Python will RgX run?

R/X is supposed to work with Python 2.1 and above. However, most of the development takes place under
the current production version of Python (2.4.1 by the time of this writing) and thus RX is better tested with
this version. On the other hand, the examples and tests are verified to run with Python 2.1 and above using
the latest bugfix releases. RzX will not work with earlier Python versions due to missing language features.

The version of your Python interpreter can be determined by calling it with the option -V. Alternatively,
you can simply start the interpreter and take a look at the startup message. Note that there may be different
versions of Python installed on your system at the same time. The default Python version need not be the
same for all users.

1.7 Does R/X provide a GUI to view the produced image?

No, RX itself does not provide a means to view the produced image. The result of a R2X run is an EPS (=
Encapsulated PostScript) file, a PS (= PostScript) file or a PDF (= Portable Document Format) file, which
can be viewed, printed or imported into other applications.

There are several means of viewing PS and EPS files. A common way would be to use ghostview which
provides a user interface to the PostScript interpreter ghostscript. More information about this software,
which is available for a variety of platforms, can be found at http://www.cs.wisc.edu/~ghost/. If you
do not own a printer which is capable of printing PostScript files directly, ghostscript may also be useful
to translate PS and EPS files produced by ReX into something your printer will understand.

PDF files can be viewed by means of the Adobe Reader® available from http://www.adobe . com/
products/acrobat/readstep2.html. On systems running X11, xpdf might be an alternative. It is
available from http://www.foolabs.com/xpdf/.

1.8 | am a Gnuplot user and want to try RX. Where can | get some help?

There exists a tutorial by Titus Winters which explains how to perform standard Gnuplot tasks with RzX.
The tutorial can be found at http://www.cs.ucr.edu/~titus/pyxTutorial/.

1.9 Where can | get help if my question is not answered in this FAQ?

The RX sources contain a reference manual which is also available online at http://pyx.sourceforge.
net/manual/. Furthermore, there exists a set of examples demonstrating various features of RX, which
is available in the sources or can be browsed at http://pyx.sourceforge.net/examples.html. If the
feature you are looking for is among them, using the appropriate part of the example code or adapting it for
your purposes may help.

There is also a user discussion list about RZX which you can subscribe toathttp://lists.sourceforge.
net/lists/listinfo/pyx-user. The archive of the discussion list is available athttp://sourceforge.
net/mailarchive/forum.php?forum id=23700.

Finally, it might be worth checking http://pyx.sourceforge.net/pyxfaq.pdf for an updated ver-
sion of this FAQ.

http://www.cs.wisc.edu/~ghost/
http://www.adobe.com/products/acrobat/readstep2.html
http://www.adobe.com/products/acrobat/readstep2.html
http://www.foolabs.com/xpdf/
http://www.cs.ucr.edu/~titus/pyxTutorial/
http://pyx.sourceforge.net/manual/
http://pyx.sourceforge.net/manual/
http://pyx.sourceforge.net/examples.html
http://lists.sourceforge.net/lists/listinfo/pyx-user
http://lists.sourceforge.net/lists/listinfo/pyx-user
http://sourceforge.net/mailarchive/forum.php?forum_id=23700
http://sourceforge.net/mailarchive/forum.php?forum_id=23700
http://pyx.sourceforge.net/pyxfaq.pdf

2 Python

2.1 What is Python?

From www.python.org:

Python is an interpreted, interactive, object-oriented programming language. It is often com-
pared to Tcl, Perl, Scheme or Java.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions,
very high level dynamic data types, and dynamic typing. There are interfaces to many system
calls and libraries, as well as to various windowing systems (X11, Motif, Tk, Mac, MFC). New
built-in modules are easily written in C or C++. Python is also usable as an extension language
for applications that need a programmable interface.

The Python implementation is portable: it runs on many brands of UNIX, on Windows, OS/2,
Mac, Amiga, and many other platforms. If your favorite system isn’t listed here, it may still be
supported, if there’s a C compiler for it. Ask around on news:comp.lang.python — or just try
compiling Python yourself.

The Python implementation is copyrighted but freely usable and distributable, even for com-
mercial use.

2.2 Where can | learn more about Python?

The place to start is www.python.org where you will find plenty of information on Python including
tutorials.

2.3 What do | need to import in order to use ReX?
It is recommended to begin your Python code with
from pyx import *

when using ReX. This allows you for example to write simply graph . graphxy instead of pyx . graph . graphxy.
The following modules will be loaded: attr, box, bitmap, canvas, color, connector, deco, deformer,
document, epsfile, graph, path, pattern, style, trafo, text, and unit.

For convenience, you might import specific objects of a module like in

from graph import graphxy

which allows you to write graphxy () instead of graph.graphxy ().
All code segments in this document assume that the import line mentioned in the first code snippet is
present.

2.4 What is a raw string and why should | know about it when using ReX?

The backslash serves in standard Python strings to start an escape sequence. For example \n corresponds to
a newline character. On the other hand, TgX and ISTEX, which do the typesetting in RiX, use the backslash
to indicate the start of a command. In order to avoid the standard interpretation, the string should be marked
as a raw string by prepending it by an r like in

c.text(0, 0, r"$\alpha\beta\gamma$")

www.python.org
news:comp.lang.python
http://www.python.org/doc/Copyright.html
www.python.org

3 General aspects of plotting with ReX

3.1 How do | generate multipage output?

With versions 0.8 and higher it is possible to produce multipage output, i.e. a Postscript or PDF file con-
taining more than one page. In order to achieve this, one creates pages by drawing on a canvas as usual and
appends them in the desired order to a document from which Postscript or PDF output is produced. The
following example serves as an illustration:

from pyx import *

d = document.document ()
for i in range(3):
¢ = canvas.canvas()
c.text(0, 0, "page %i" % (i+1))
d.append(document.page(c, paperformat=document.paperformat.A4,
margin=3*unit.t_cm,
fittosize=1))
d.writePSfile("multipage")

Here, d is the document into which pages are inserted by means of the append method. When converting
from a canvas to a document page, the page properties like the paperformat are specified. In the last line,
output is produced from document d.

4 Plotting of graphs

4.1 General aspects
4.1.1 How do | generate a graph from data as simply as possible?

Suppose that you have a data file x.dat containing values for x and y in two columns. Then the following
code will do the job

from pyx import *

g = graph.graphxy(width=10)
g.plot(graph.data.file("x.dat", x=1, y=2))
g.writeEPSfile("x")

graphxy creates a canvas (called g in this example) onto which the graph will be drawn and it sets the
default behavior including the axis. There is, however, no default value for the width of the graph. In plot
you have to specify the name of the data file and the columns from which the data should be taken. Finally,
writeEPSfile will generate the postscript file x . eps which you can view or print.

A minimal example is also provided in the R’X distribution as examples/graphs/minimal. py.

4.1.2 How do | generate a graph of a function as simply as possible?
The following example will draw a parabola:
from pyx import *

g = graph.graphxy(width=10,
x=graph.axis.linear (min=-2, max=2)

)

g.plot(graph.data.function("y(x)=x**2"))

g.writeEPSfile("x")

Most of the code has been explained in T4.1.1. The main difference is that here you need to specify minimum
and maximum for the x-axis so that RX knows in which range to evaluate the function.

Another, slightly more complex, example is also provided in the RgX distribution as examples/graphs/
piaxis.py.

4.1.3 How can | stack graphs?

R/X always needs a canvas to draw on. One possibility therefore consists in creating a new canvas with

c = canvas.canvas()

and inserting the graphs into this canvas with c.insert(...). Here, ... has to be replaced by the name
of the graph. Alternatively, the canvas created with graph.graphxy for one of the graphs can be used to
insert the other graphs even if they will be positioned outside the first graph.

The second issue to address is positioning of the graphs. By specifying xpos and ypos when calling
graphxy, you can define the position of a graph. Later on, the position and size of a graph g can be referred
to as g.xpos, g.ypos, g.width, and g.height even if for example the height has never been specified
explicitly but is only defined by a RiX default.

The following example shows how to put graph gupper above graph glower on a canvas c:

from pyx import *
from graph import graphxy

¢ = canvas.canvas()

glower = graphxy(width=10)
glower.plot(...)
c.insert(glower)

gupper = graphxy(width=10, ypos=glower.ypos+glower.height+2)
gupper.plot(...)

c.insert (gupper)
c.writeEPSfile(...)

where ... has to be replaced by the appropriate information like data and symbol specifications and the
name of the output file. Here, c.insert is used to actually insert the subcanvasses for the graphs into the
main canvas ¢ and c.writeEPSfile in the last line requests to write the contents of this canvas to a file.

4.1.4 How can | plot grid data?

R/X offers support for plotting three-dimensional data as two-dimensional color plots or grey-scale plots and
of vector fields by providing ways to plot rectangles and arrows in graphs.

We start by considering the task of creating a two-dimensional color plot by plotting a number of filled
rectangles. One first needs to create a data set which consists of five entries per data point. These are the
lower left corner (Xmin,Ymin) and the upper right corner (Xmax, ymax) Of the triangle and a value between 0
and 1 determining the color via a RiX color palette. The following code gives an idea of how to proceed:

g.plot(graph.data.file("datafile.dat"), xmin=1, xmax=2, ymin=3, ymax=4, color=5),
[graph.style.rect(color.palette.ReverseRainbow)]
)
g.dodata()

Here, we assume that the data are stored in datafile.dat and the columns contain Xyin, Xmax> Ymin> Ymax»
and the color value in this order. The columns are numbered from 1, since the Oth column contains the line
number. To determine the color, we use the ReverseRainbow palette. The last line instructs RX to plot the
rectangles before plotting the axes. Otherwise, the axes might be covered partially by the rectangles and, in
particular, the ticks might not be visible. Gray-scale plots can easily be generated by specifying the palette
Gray or ReverseGray (cf. appendix C of the manual for a list of predefined palettes).

At first sight, it seems surprising that plotting of grid data requires the specification of four coordinates
for the rectangle. The reason is that this allows to draw rectangles of varying sizes which may help to reduce
the size of the postscript file by combining rectangles of the same color in horizontal or vertical direction.
For example, it may be sufficient to plot a grey-scale image in a small number of grey shades and then
combining rectangles may be appropriate. Note, though, that this step is part of the data creation and not
preformed by RzX. Another advantage of fully specifying each rectangle is that it is straightforward to leave
parts of the graph blank.

The same ideas as for the color plot can be applied to plot vector fields where each data point is represented
by an arrow. In this case a data point is specified by the position of the arrow, its size and its direction as
indicated in the following code snippet:

g.plot(graph.data.file("datafile.dat"), x=1, y=2, size=3, angle=4),

[graph.style.arrow()]
)

Complete code examples can be found in examples/graphs/mandel.py and examples/graphs/
arrows.py.

4.1.5 How can | access points in problem coordinates of a graph?

Sometimes it may be necessary to add graphical elements to a graph in addition to the data or function(s)
which have been plotted as described in T4.1.1 and T4.1.2. For a graph instance g the positioning can easily
be done in canvas coordinates by making use of the origin (g.xpos, g.ypos) and the width (g.width) and
height (g.height) of the graph.

Occasionally, it may be more convenient to specify the position of the additional material in terms of
problem coordinates. However, this requires that the mapping from problem coordinates to canvas coordi-
nates is known. By default this is not the case before the content of the canvas is written to the output which
is too late for our purpose. One therefore needs to explicitly instruct RZX to determine this mapping. One
possibility is to ask R/X to finish the graph by means of g.finish(). Now, problem coordinates can be
used to insert additional material which will end up in front of the graph. If this is not desired, one should
only fix the layout of the graph by means of g.dolayout (). Then, the additional material can be put onto
the canvas before the graph is drawn and it will therefore appear behind the graph.

The conversion of problem coordinates (px, py) to canvas coordinates (x, y) is performed as follows:

x, y = g.pos(px, py)

By default, the problem coordinates will refer to the ranges of the x and y axes. If several axes with different
ranges exist, the instances of the desired axes should be passed to the pos method by means of the keyword
arguments xaxis and yaxis.

We remark that the drawing of lines parallel to one of the axes at specific problem coordinates can also
be done by adapting the method described in 14.2.2.

4.2 Axis properties

4.2.1 How do | specify the tick increment?

In the partition of a linear axis, the increments associated with ticks, subticks etc. can be specified as argu-
ment of parter.linear. In the following example, ticks will be drawn at even values while subticks will

be drawn at all integers:

from pyx.graph import axis
tg = graph.graphxy(width=10,
x=axis.linear (min=1, max=10,
parter=axis.parter.linear(tickdist=[2,1]))

)

4.2.2 How do | plot the zero line?

R/X releases before 0.6 offered the possibility to stroke a zero line by specifying zeropathattrs in the
painter constructor. In more recent releases, one proceeds as follows. First one has to fix the layout informa-
tion of the graph by means of the finish or dolayout method (see 4.1.5 for a more detailed explanation).
Then, the xgridpath or ygridpath method of a graph will return a grid path parallel to the y or x axis,
respectively, at the specified y value. As an example, a zero line in x direction can be drawn as follows:

g.finish()
g.stroke(g.ygridpath(0))

4.2.3 How can | add grid lines to a graph?

Specifying gridattrs for the painter of an axis will generate grid lines orthogonal to this axis. At least an
empty list is needed like in

g = graph.graphxy (width=10,
x=graph.axis.linear (painter=graph.axis.painter.regular(gridattrs=[])),
y=graph.axis.linear()

)

where grid lines in vertical direction are drawn in default style.
Occassionally, one might want to draw grid lines corresponding to ticks and subticks in a different style.
This can be achieved by specifiying changeable attributes using changelist. The following code

my_xpainter = graph.axis.painter.regular(gridattrs=
[attr.changelist([style.linestyle.solid, style.linestyle.dashed])]
)
my_ypainter = graph.axis.painter.regular(gridattrs=
[attr.changelist([color.rgb.red, color.rgb.blue])]
)

g = graph.graphxy (width=10,
x=graph.axis.linear (painter=my_xpainter),
y=graph.axis.linear(painter=my_ypainter)

)

will create vertical solid and dashed grid lines for ticks and subticks, respectively. The horizontal grid
lines will be red for ticks and blue for subticks. The changeable attributes are applied in a cyclic manner.
Therefore, in this example grid lines at subsubticks would be plotted in the same style as for ticks. If this
is not desired, the list of attributes should be extended by an appropriate third style. The keyword None
will switch off the respective level of grid lines in case you want to draw them only e.g. for ticks but not
subticks.

4.3 Data properties
4.3.1 How do | choose the symbol and its attributes?

Suppose a graph called g has been initialized, e.g. by using graph.graphxy. Then, data and the style of
their representation in the graph are defined by calling g.plot like in the following example in which filled
circles are requested:

g.plot(graph.data.file("test.dat"),
[graph.style.symbol(graph.style.symbol.circle, symbolattrs=[deco.filled])]

As another example, if the linewidth of the symbol is too thin for your purposes, you could use something
like:

[graph.style.symbol(graph.style.symbol.plus, symbolattrs=[style.linewidth.Thick])]

4.3.2 How do | choose the color of the symbols?

Colors are not properties of the symbol as such and can therefore not be specified in symbolattrs directly.
The color is rather related to the plotting of the symbol as defined by deco.stroked or deco.filled.
With
graph.style.symbol (graph.style.symbol.circle,
symbolattrs=[deco.stroked([color.rgb.red]),

deco.filled([color.rgb.green])]
)

you will obtain a circle filled in green with a red borderline.

4.3.3 How do | choose the line style?

If you do not want to use symbols, you can set the line style as in this example

g.plot(graph.data.file("test.dat"),
[graph.style.line([style.linewidth.Thin])]
)

where the linewidth is set.
If you also want to use symbols, you can combine the symbol and the line style as in

g.plot(graph.data.file("test.dat"),
[graph.style.line(lineattrs=[style.linewidth.Thin,
style.linestyle.dashed]),
graph.style.symbol(graph.style.symbolline.circle,
symbolattrs=[deco.filled])])

to plot the symbols on top of a thin, dashed line. You may alter the order of the styles to plot the line on top
of the symbols.

4.3.4 How can | change the color of symbols or lines according to a palette? NEW

If several data sets should be plotted in different colors, one can specify in symbolattrs and/or lineattrs
a palette like color.palette.Rainbow. Equidistant colors are chosen spanning the palette from one end
to the other. For example, for three data sets the colors are chosen from the palette at 0.,0.5, and 1. For the
rainbow palette, this would correspond to red, green, and blue, respectively.

In the following example, symbols vary in form and change their color according to the rainbow palette
at the same time as the connecting lines:

10

mystyle = [graph.style.symbol(graph.style.symbol.changecircle,
symbolattrs=[color.palette.Rainbow]),
graph.style.line(lineattrs=[color.palette.Rainbow])]

See question 4.3.5 for a more complete example demonstrating how to use this style definition and for a
comment on the necessity of defining mystyle (you are of course free to choose a different name).

4.3.5 How can | specify changing colors (or other attributes) for symbols or lines? NEW
In symbolattrs and/or lineattrs so-called changelist can be used. As an example

mystyle = graph.style.symbol(symbolattrs=

[attr.changelist([color.rgb.red, color.rgb.green])])
g.plot(graph.data.file("x.dat", x=1, y=2), [mystylel)
g.plot(graph.data.file("y.dat", x=1, y=2), [mystyle])
g.plot(graph.data.file("z.dat", x=1, y=2), [mystylel)

will switch between red and green symbols each time a new data set is plotted. Several changelists can be
specified. They are cycled independently and need not be of the same length. It should be noted that the def-
inition of mystyle in this example ensures that there is only one instance of the definition of symbolattrs.
Putting an explicit definition of symbolattrs in each call to plot would not lead to the desired result
because each time a new instance would be created which then starts with the first item in the changelist.

It may be necessary to repeat attributes in order that several changelists cooperate to produce the desired
result. A common situation is that one would like to cycle through a list of symbols which should be used
in alternating colors. This can be achieved with the following code:

mystyle = graph.style.symbol(

graph.style.symbol.changetriangletwice,
symbolattrs=[attr.changelist([color.rgb.red, color.rgb.green])])

which will produce a red triangle, a green triangle, a red circle, a green circle and so on for diamond and
square because changetriangletwice lists each symbol twice. If instead of changing between colors one
would like to change between filled and open symbols, one can make use of a predefined changelist

mystyle = graph.style.symbol(

graph.style.symbol.changetriangletwice,
symbolattrs=[graph.style.symbol.changefilledstroked])

5 Other plotting tasks

5.1 How can | rotate text?

Text can be written at an arbitrary angle by specifying the appropriate transformation as an attribute. The
command

c.text(0, 0, "Text", [trafo.rotate(60)])

will write at an angle of 60 degrees relative to the horizontal axis. If no pivot is specified (like in this
example), the text is rotated around the reference point given in the first two arguments of text. In the
following example, the pivot coincides with the center of the text:

c.text(0, 0, "Text", [text.halign.center,text.valign.middle,trafo.rotate(60)])

11

5.2 How can | clip a canvas? NEW

In order to use only a part of a larger canvas, one may want to clip it. This can be done by creating a clipping
object which is used when creating a canvas instance:

clippath = path.circle(0.,0.,1.)
clipobject = canvas.clip(clippath)
¢ = canvas.canvas([clipobject])

In this example, the clipping path used to define the clipping object is a circle.

6 TEX and BTEX

6.1 General aspects
6.1.1 What is TEX/BTEX and why do | need it?

TEX is a high quality typesetting system developed by Donald E. Knuth which is available for a wide variety
of operating systems. I&TEX is a macro package originally developed by Leslie Lamport which makes life
with TgX easier, in particular for complex typesetting tasks. The current version of I&TEX is referred to as
IATEX 2¢ and offers e.g. improved font selection as compared to the older ISTEX 2.09 which should no longer
be used.

All typesetting tasks in RX are finally handed over to TgX (which is the default) or IXTEX, so that RiX
cannot do without it. On the other hand, the capabilities of TgX and I&TEX can be used for complex tasks
where both graphics and typesetting are needed.

6.1.2 | don’t know anything about TgX and BTEX. Where can | read something about it?

Take a look at CTAN (76.1.3) where in CTAN: info you may be able to find some useful information. There
exists for example “A Gentle Introduction to TgX” by M. Doob (CTAN:gentle/gentle.pdf) and “The Not
So Short Introduction to I&TEX 2¢” (CTAN: info/1short/english/1lshort.pdf) by T. Oetiker et al. The
latter has been translated into a variety of languages among them korean (which you will not be able to read
unless you have appropriate fonts installed) and mongolian.

Of course, it is likely that these documents will go way beyond what you will need for generating graphics
with RiX so you don’t have to read all of it (unless you want to use TgX or IXIEX for typesetting which can
be highly recommended).

There exists also a number of FAQs on TgX at CTAN:help.

6.1.3 What is CTAN?

CTAN is the Comprehensive TeX Archive Network where you will find almost everything related to TgX
and friends. The main CTAN servers are tug.ctan.org, dante.ctan.org, and cam.ctan.org. A list of
FTP mirrors can be found at CTAN:CTAN. sites.

In this FAQ, CTAN: refers to the root of an anonymous ftp CTAN tree, e.g. ftp://ctan.tug.org/
tex-archive/, ftp://ftp.dante.de/tex-archive/, and ftp://ftp.tex.ac.uk/tex-archive/.
The links to CTAN in this document point to one of these servers but you might consider using a FTP mirror
closer to you in order to reduce traffic load.

6.1.4 Is there support for ConTEXt?

No, and as far as I know there no plans to provide it in the near future. Given the close ties between ConTgXt
and MetaPost, ConTgXt users probably prefer to stick with the latter anyway.

12

ftp://ctan.tug.org/tex-archive/info
ftp://ctan.tug.org/tex-archive/gentle/gentle.pdf
ftp://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf
ftp://ctan.tug.org/tex-archive/help
tug.ctan.org
dante.ctan.org
cam.ctan.org
ftp://ctan.tug.org/tex-archive/CTAN.sites
ftp://ctan.tug.org/tex-archive/
ftp://ctan.tug.org/tex-archive/
ftp://ftp.dante.de/tex-archive/
ftp://ftp.tex.ac.uk/tex-archive/

6.2 TeX and BTEX commands useful for ReX
6.2.1 How do | get a specific symbol with TEX or BTEX?

A list of mathematical symbols together with the appropriate command name can be found at CTAN:info/
symbols/math/symbols.ps. A comprehensive list containing more than 2500 symbols for use with ISIEX
can be obtained from CTAN: info/symbols/comprehensive/symbols-a4.pdf. In some cases it might
be necessary to install fonts or packages available from CTAN (76.1.3).

6.3 TeX and BTEX errors
6.3.1 Undefined control sequence \usepackage

The command \usepackage is specific to IATEX. Since by default RX uses TgX, you have to specify the
correct mode:

text.set (mode="latex")

6.3.2 Undefined control sequence \frac

The command \frac is only available in I&TEX. In TgX you should use {a\over b} in math mode to produce
5- As an alternative you may ask for the I5TiEX mode as explained in 6.3.1.

6.3.3 Missing $ inserted

You have specified TgX- or I&IEX-code which is only valid in math mode. Typical examples are greek
symbols, sub- and superscripts or fractions.
On the RX level, you can specify math mode for the whole string by using text .mathmode as in

c.text(0, 0, r"\alpha", text.mathmode)

Keep also in mind that the standard Python interpretation of the backslash as introducing escape sequences
needs to be prevented 2.4.

On the TEX/ISTEX level you should enclose the commands requiring math mode in $’s. As an example,
$\alpha_i~j$ will produce a. This allows you to specify math mode also for substrings. There exist other
ways to specify math mode in TgX and IKTEX which are particularly useful for more complex typesetting
tasks. To learn more about it, you should consult the documentation 76.1.2.

6.3.4 Why do environments like itemize or egnarray seem not to work?

An itemize environment might result in a I&TEX error complaining about a “missing \item” or an eqnarray
might lead to a ISIEX message “missing \endgroup inserted” even though the syntax appears to be
correct. The TgXnical reason is that in ReX text is typeset in left-right mode (LR mode) which does not allow
linebreaks to occur. There are two ways out.

If the text material should go in a box of given width, a parbox can be used like in the following example:

text.set (mode="latex")

¢ = canvas.canvas()

w =2

c.text(0, O, r"\begin{itemize}\item a\item b\end{itemizel}", [text.parbox(w)])

Occasionally, one would like to have the box in which the text appears to be as small as possible. Then
the fancybox package developed by Timothy Van Zandt is useful which provides several environments like
Bitemize and Beqnarray which can be processed in LR mode. The relevant part of the code could look
like:

13

ftp://ctan.tug.org/tex-archive/info/symbols/math/symbols.ps
ftp://ctan.tug.org/tex-archive/info/symbols/math/symbols.ps
ftp://ctan.tug.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf

text.set (mode="latex")

text.preamble (r"\usepackage{fancybox}")

¢ = canvas.canvas()

c.text(0, O, r"\begin{Bitemize}\item a\item b\end{Bitemizel}")

Other environments provided by the fancybox package include Bcenter, Bflushleft, Bflushright,
Benumerate, and Bdescription. For more details, the documentation of the package should be con-
sulted.

6.3.5 Font shape ‘OT1/xyz/m/n’ undefined

You have asked to use font xyz which is not available. Make sure that you have this font available in Typel
format, i.e. there should be a file xyz.pfb somewhere. If your TgX system is TDS compliant (TDS=TgX
directory structure, cf. CTAN:tds/draft-standard/tds/tds.pdf) you should take a look at the subdi-
rectories of TEXMF/fonts/typel.

6.3.6 File ... is not available or not readable

Such an error message might already occur when running the example file hello.py included in the RiX
distribution. Usually, the error occurs due to an overly restrictive umask setting applied when unpacking the
tar.gz sources. This may render the file mentioned in the error message unreadable because the python
distutil installation package doesn’t change the file permissions back to readable for everyone.

If the file exists, the problem can be solved by changing the permissions to allow read access.

6.3.7 No information for font ‘cmrl0Q’ found in font mapping file

Such an error message can already be encountered by simply running the example file hello. py included
in the ReX distribution. The likely reason is that the TgX system does not find the cmr fonts in Typel format.
R/X depends on these fonts as it does not work with the traditional pk fonts which are stored as bitmaps.

Therefore, the first thing to make sure is that the cmr Typel fonts are installed. In some TEX installations,
the command kpsewhich cmr10.pfb will return the appropriate path if the cmr fonts exist in the binary
Typel format (extension pfb) required by ReX. If the command does not work but the TeX system is TDS
compliant (76.3.5), a look should be taken at TEXMF/fonts/typel/bluesky/cm where TEXMF is the root
of the texmf tree.

If the Typel fonts do not exist on the system, they may be obtained from the CTAN 76.1.3 at CTAN:
fonts/cm/ps-typel/bluesky. See the README for information about who produced these fonts and why
they are freely available.

If the Typel fonts exist, the next step is to take a look at psfonts.map. There may be several files
with this name on the system, so it is important to find out which one TeX is actually using. kpsewhich
psfonts.map might give this information.

The most likely problem is that this file does not contain a line telling TeX what to do if it encounters a
request for font cmr10, i.e. the following line may be missing

cmr10 CMR10 <cmrl10.pfb

It is probable that the required lines (in practice, you do not just need cmr10) are found in a file named
psfonts.cmz which resides in TEXMF/dvips/bluesky.

One solution is to instruct RX to read additional map files like psfonts.cmz or psfonts.amz. This
can be achieved by modifying the appropriate pyxrc file which is either the systemwide /etc/pyxrc or
.pyxrc in the user’s home directory. Here, the names of the map files to be read by R/X should be appended
separated by whitespaces like in the following example:

14

ftp://ctan.tug.org/tex-archive/tds/draft-standard/tds/tds.pdf
ftp://ctan.tug.org/tex-archive/fonts/cm/ps-type1/bluesky
ftp://ctan.tug.org/tex-archive/fonts/cm/ps-type1/bluesky

[text]
fontmaps = psfonts.map psfonts.cmz psfonts.amz

The same effect can be achieved by inserting the following line into the RX code:

text.set (fontmaps="psfonts.map psfonts.cmz psfonts.amz")

Note that the default map (psfonts.map) has to be specified explicitly.

An alternative approach consists in modifying the TgX installation by inserting the contents of the desired
map files like psfonts.cmz into psfonts.map. Probably, psfonts.map recommends not to do this by
hand. In this case the instructions given in the file should be followed. Otherwise, psfonts.cmz should
be copied into psfonts.map while keeping a backup of the old psfonts.map just in case. After these
changes, ReX most likely will be happy. When inserting psfonts. cmz into psfonts.map it may be a good
idea to include psfonts.amz as well. psfonts.amz contains information about some more fonts which
might be needed at some point. Making these changes ot psfonts.map will imply that the TgX system will
use the cmr fonts in Typel format instead of pk format which is actually not a bad thing, in particular if
latex / dvips / ps2pdf is used to generate PDF output. With fonts in pk format this will look ugly and
using Typel fonts solves this problem as well. When pdflatex is used to create PDF files, Typel fonts will
be used anyway.

6.4 Fonts
6.4.1 | want to use a font other than computer modern roman

As long as you have a font in Typel format available, this should be no problem (even though it may cost
you some time to set up things properly).

In the simplest case, your IZTEX system contains everything needed. Including the following line into
your code will probably work

text.set (mode="latex")
text.preamble (r"\usepackage{mathptmx}")

and give you Times as roman font.

If you own one of the more common commercial fonts, take a look at CTAN: fonts and its subdirectories
as well as at the web page http://home.vr-web.de/was/fonts.html of Walter Schmidt. It is not
unlikely that somebody has already done most of the work for you and created the files needed for the font
to work properly with IATEX. But remember: we are talking about commercial fonts here, so do not expect
to find the fonts themselves for free.

If none of these cases applies, you should spend some time reading manuals about font installation, e.g.
CTAN:macros/latex/doc/fntguide.pdf (of course, I do not expect font wizards to read the last few
lines).

6.4.2 Can | use a TrueType font with ReX?

Not directly as RZX only knows how to handle Typel fonts (although it is possible to get ISTEX to work with
TrueType fonts). However, you may use ttf2pt1l (fromhttp://ttf2ptl.sourceforge.net) to convert
a TrueType font into a Typel font which you then install in your TgX system 76.4.1. You will loose hinting
information in the conversion process but this should not really matter on output devices with not too low
resolution.

15

ftp://ctan.tug.org/tex-archive/fonts
http://home.vr-web.de/was/fonts.html
ftp://ctan.tug.org/tex-archive/macros/latex/doc/fntguide.pdf
http://ttf2pt1.sourceforge.net

	General aspects of PyX
	The name of the game
	Where do I get the latest version of PyX?
	How can I determine the version of PyX running on my machine?
	How can I access older versions of PyX?
	Does PyX run under my favorite operating system?
	Under which versions of Python will PyX run?
	Does PyX provide a GUI to view the produced image?
	I am a Gnuplot user and want to try PyX. Where can I get some help?
	Where can I get help if my question is not answered in this FAQ?

	Python
	What is Python?
	Where can I learn more about Python?
	What do I need to import in order to use PyX?
	What is a raw string and why should I know about it when using PyX?

	General aspects of plotting with PyX
	How do I generate multipage output?

	Plotting of graphs
	General aspects
	How do I generate a graph from data as simply as possible?
	How do I generate a graph of a function as simply as possible?
	How can I stack graphs?
	How can I plot grid data?
	How can I access points in problem coordinates of a graph?

	Axis properties
	How do I specify the tick increment?
	How do I plot the zero line?
	How can I add grid lines to a graph?

	Data properties
	How do I choose the symbol and its attributes?
	How do I choose the color of the symbols?
	How do I choose the line style?
	How can I change the color of symbols or lines according to a palette?
	How can I specify changing colors (or other attributes) for symbols or lines?

	Other plotting tasks
	How can I rotate text?
	How can I clip a canvas?

	TeX and LaTeX
	General aspects
	What is TeX/LaTeX and why do I need it?
	I don't know anything about TeX and LaTeX. Where can I read something about it?
	What is CTAN?
	Is there support for ConTeXt?

	TeX and LaTeX commands useful for PyX
	How do I get a specific symbol with TeX or LaTeX?

	TeX and LaTeX errors
	Undefined control sequence \usepackage
	Undefined control sequence \frac
	Missing $ inserted
	Why do environments like itemize or eqnarray seem not to work?
	Font shape `OT1/xyz/m/n' undefined
	File … is not available or not readable
	No information for font `cmr10' found in font mapping file

	Fonts
	I want to use a font other than computer modern roman
	Can I use a TrueType font with PyX?

