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SUMMARY
The report gives a de�ning description of the program-
ming language Scheme. Scheme is a statically scoped and
properly tail-recursive dialect of the Lisp programming
language invented by Guy Lewis Steele Jr. and Gerald
Jay Sussman. It was designed to have an exceptionally
clear and simple semantics and few di�erent ways to form
expressions. A wide variety of programming paradigms, in-
cluding imperative, functional, and message passing styles,
�nd convenient expression in Scheme.
The introduction o�ers a brief history of the language and
of the report.
The �rst three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language.
Chapters 4 and 5 describe the syntax and semantics of
expressions, programs, and de�nitions.
Chapter 6 describes Scheme's built-in procedures, which
include all of the language's data manipulation and in-
put/output primitives.
Chapter 7 provides a formal syntax for Scheme written in
extended BNF, along with a formal denotational semantics.
An example of the use of the language follows the formal
syntax and semantics.
The report concludes with a list of references and an al-
phabetic index.
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INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, su�ce to form a practical and e�cient
programming language that is 
exible enough to support
most of the major programming paradigms in use today.
Scheme was one of the �rst programming languages to in-
corporate �rst class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the �rst major dialect of Lisp to distinguish procedures
from lambda expressions and symbols, to use a single lex-
ical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an
operand position. By relying entirely on procedure calls
to express iteration, Scheme emphasized the fact that tail-
recursive procedure calls are essentially goto's that pass
arguments. Scheme was the �rst widely used program-
ming language to embrace �rst class escape procedures,
from which all previously known sequential control struc-
tures can be synthesized. A subsequent version of Scheme
introduced the concept of exact and inexact numbers, an
extension of Common Lisp's generic arithmetic. More re-
cently, Scheme became the �rst programming language to
support hygienic macros, which permit the syntax of a
block-structured language to be extended in a consistent
and reliable manner.

Background
The �rst description of Scheme was written in 1975 [28]. A
revised report [25] appeared in 1978, which described the
evolution of the language as its MIT implementation was
upgraded to support an innovative compiler [26]. Three
distinct projects began in 1981 and 1982 to use variants
of Scheme for courses at MIT, Yale, and Indiana Univer-
sity [21, 17, 10]. An introductory computer science text-
book using Scheme was published in 1984 [1].
As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it di�cult to understand code written at other
sites. Fifteen representatives of the major implementations
of Scheme therefore met in October 1984 to work toward
a better and more widely accepted standard for Scheme.
Their report [4] was published at MIT and Indiana Univer-
sity in the summer of 1985. Further revision took place in
the spring of 1986 [23], and in the spring of 1988 [6]. The
present report re
ects further revisions agreed upon in a
meeting at Xerox PARC in June 1992.
We intend this report to belong to the entire Scheme com-

munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors
of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.
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DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme
1.1. Semantics

This section gives an overview of Scheme's semantics. A
detailed informal semantics is the subject of chapters 3
through 6. For reference purposes, section 7.2 provides a
formal semantics of Scheme.
Following Algol, Scheme is a statically scoped program-
ming language. Each use of a variable is associated with a
lexically apparent binding of that variable.
Scheme has latent as opposed to manifest types. Types
are associated with values (also called objects) rather than
with variables. (Some authors refer to languages with
latent types as weakly typed or dynamically typed lan-
guages.) Other languages with latent types are APL,
Snobol, and other dialects of Lisp. Languages with mani-
fest types (sometimes referred to as strongly typed or stat-
ically typed languages) include Algol 60, Pascal, and C.
All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation. Other
languages in which most objects have unlimited extent in-
clude APL and other Lisp dialects.
Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative compu-
tation is described by a syntactically recursive procedure.
Thus with a properly tail-recursive implementation, iter-
ation can be expressed using the ordinary procedure-call
mechanics, so that special iteration constructs are useful
only as syntactic sugar. See section 3.5.
Scheme procedures are objects in their own right. Pro-
cedures can be created dynamically, stored in data struc-
tures, returned as results of procedures, and so on. Other
languages with these properties include Common Lisp and
ML.
One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have \�rst-class" status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section 6.4.
Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, whether
the procedure needs the result of the evaluation or not.

ML, C, and APL are three other languages that always
pass arguments by value. This is distinct from the lazy-
evaluation semantics of Haskell, or the call-by-name se-
mantics of Algol 60, where an argument expression is not
evaluated unless its value is needed by the procedure.
Scheme's model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Thus the distinction be-
tween integer and real arithmetic, so important to many
programming languages, does not appear in Scheme. In its
place is a distinction between exact arithmetic, which cor-
responds to the mathematical ideal, and inexact arithmetic
on approximations. As in Common Lisp, exact arithmetic
is not limited to integers.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully paren-
thesized pre�x notation for programs and (other) data; the
grammar of Scheme generates a sublanguage of the lan-
guage used for data. An important consequence of this sim-
ple, uniform representation is the susceptibility of Scheme
programs and data to uniform treatment by other Scheme
programs. For example, the eval procedure evaluates a
Scheme program expressed as data.
The read procedure performs syntactic as well as lexical
decomposition of the data it reads. The read procedure
parses its input as data (section 7.1.2), not as program.
The formal syntax of Scheme is described in section 7.1.

1.3. Notation and terminology

1.3.1. Primitive, library, and optional features
It is required that every implementation of Scheme support
all features that are not marked as being optional. Imple-
mentations are free to omit optional features of Scheme
or to add extensions, provided the extensions are not in
con
ict with the language reported here. In particular,
implementations must support portable code by providing
a syntactic mode that preempts no lexical conventions of
this report.
To aid in understanding and implementing Scheme, some
features are marked as library. These can be easily imple-
mented in terms of the other, primitive, features. They are
redundant in the strict sense of the word, but they capture
common patterns of usage, and are therefore provided as
convenient abbreviations.
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1.3.2. Error situations and unspeci�ed behavior
When speaking of an error situation, this report uses the
phrase \an error is signalled" to indicate that implemen-
tations must detect and report the error. If such wording
does not appear in the discussion of an error, then imple-
mentations are not required to detect or report the error,
though they are encouraged to do so. An error situation
that implementations are not required to detect is usually
referred to simply as \an error."
For example, it is an error for a procedure to be passed an
argument that the procedure is not explicitly speci�ed to
handle, even though such domain errors are seldom men-
tioned in this report. Implementations may extend a pro-
cedure's domain of de�nition to include such arguments.
This report uses the phrase \may report a violation of an
implementation restriction" to indicate circumstances un-
der which an implementation is permitted to report that
it is unable to continue execution of a correct program be-
cause of some restriction imposed by the implementation.
Implementation restrictions are of course discouraged, but
implementations are encouraged to report violations of im-
plementation restrictions.
For example, an implementation may report a violation of
an implementation restriction if it does not have enough
storage to run a program.
If the value of an expression is said to be \unspeci�ed,"
then the expression must evaluate to some object without
signalling an error, but the value depends on the imple-
mentation; this report explicitly does not say what value
should be returned.

1.3.3. Entry format
Chapters 4 and 6 are organized into entries. Each entry de-
scribes one language feature or a group of related features,
where a feature is either a syntactic construct or a built-in
procedure. An entry begins with one or more header lines
of the form
template category
for required, primitive features, or
template quali�er category
where quali�er is either \library" or \optional" as de�ned
in section 1.3.1.
If category is \syntax", the entry describes an expression
type, and the template gives the syntax of the expression
type. Components of expressions are designated by syn-
tactic variables, which are written using angle brackets,
for example, hexpressioni, hvariablei. Syntactic variables
should be understood to denote segments of program text;
for example, hexpressioni stands for any string of charac-
ters which is a syntactically valid expression. The notation

hthing1i : : :
indicates zero or more occurrences of a hthingi, and

hthing1i hthing2i : : :
indicates one or more occurrences of a hthingi.
If category is \procedure", then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Argument names in the template are italicized .
Thus the header line
(vector-ref vector k) procedure
indicates that the built-in procedure vector-ref takes two
arguments, a vector vector and an exact non-negative in-
teger k (see below). The header lines
(make-vector k) procedure
(make-vector k �ll) procedure
indicate that the make-vector procedure must be de�ned
to take either one or two arguments.
It is an error for an operation to be presented with an ar-
gument that it is not speci�ed to handle. For succinctness,
we follow the convention that if an argument name is also
the name of a type listed in section 3.2, then that argu-
ment must be of the named type. For example, the header
line for vector-ref given above dictates that the �rst ar-
gument to vector-ref must be a vector. The following
naming conventions also imply type restrictions:

obj any object
list, list1, : : : listj , : : : list (see section 6.3.2)
z, z1, : : : zj , : : : complex number
x, x1, : : : xj , : : : real number
y, y1, : : : yj , : : : real number
q, q1, : : : qj , : : : rational number
n, n1, : : : nj , : : : integer
k, k1, : : : kj , : : : exact non-negative integer

1.3.4. Evaluation examples
The symbol \=)" used in program examples should be
read \evaluates to." For example,

(* 5 8) =) 40
means that the expression (* 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters \(* 5 8)" evaluates, in the initial
environment, to an object that may be represented exter-
nally by the sequence of characters \40". See section 3.3
for a discussion of external representations of objects.

1.3.5. Naming conventions
By convention, the names of procedures that always return
a boolean value usually end in \?". Such procedures are
called predicates.
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By convention, the names of procedures that store values
into previously allocated locations (see section 3.4) usually
end in \!". Such procedures are called mutation proce-
dures. By convention, the value returned by a mutation
procedure is unspeci�ed.
By convention, \->" appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

2. Lexical conventions
This section gives an informal account of some of the lexical
conventions used in writing Scheme programs. For a formal
syntax of Scheme, see section 7.1.
Upper and lower case forms of a letter are never distin-
guished except within character and string constants. For
example, Foo is the same identi�er as FOO, and #x1AB is
the same number as #X1ab.

2.1. Identi�ers

Most identi�ers allowed by other programming languages
are also acceptable to Scheme. The precise rules for form-
ing identi�ers vary among implementations of Scheme, but
in all implementations a sequence of letters, digits, and \ex-
tended alphabetic characters" that begins with a character
that cannot begin a number is an identi�er. In addition,
+, -, and ... are identi�ers. Here are some examples of
identi�ers:

lambda q
list->vector soup
+ V17a
<=? a34kTMNs
the-word-recursion-has-many-meanings

Extended alphabetic characters may be used within iden-
ti�ers as if they were letters. The following are extended
alphabetic characters:

! $ % & * + - . / : < = > ? @ ^ _ ~
See section 7.1.1 for a formal syntax of identi�ers.
Identi�ers have two uses within Scheme programs:

� Any identi�er may be used as a variable or as a syn-
tactic keyword (see sections 3.1 and 4.3).

� When an identi�er appears as a literal or within a
literal (see section 4.1.2), it is being used to denote a
symbol (see section 6.3.3).

2.2. Whitespace and comments

Whitespace characters are spaces and newlines. (Imple-
mentations typically provide additional whitespace char-
acters such as tab or page break.) Whitespace is used for
improved readability and as necessary to separate tokens
from each other, a token being an indivisible lexical unit
such as an identi�er or number, but is otherwise insigni�-
cant. Whitespace may occur between any two tokens, but
not within a token. Whitespace may also occur inside a
string, where it is signi�cant.
A semicolon (;) indicates the start of a comment. The
comment continues to the end of the line on which the
semicolon appears. Comments are invisible to Scheme, but
the end of the line is visible as whitespace. This prevents a
comment from appearing in the middle of an identi�er or
number.

;;; The FACT procedure computes the factorial
;;; of a non-negative integer.
(define fact

(lambda (n)
(if (= n 0)

1 ;Base case: return 1
(* n (fact (- n 1))))))

2.3. Other notations

For a description of the notations used for numbers, see
section 6.2.

. + - These are used in numbers, and may also occur
anywhere in an identi�er except as the �rst charac-
ter. A delimited plus or minus sign by itself is also an
identi�er. A delimited period (not occurring within a
number or identi�er) is used in the notation for pairs
(section 6.3.2), and to indicate a rest-parameter in a
formal parameter list (section 4.1.4). A delimited se-
quence of three successive periods is also an identi�er.

( ) Parentheses are used for grouping and to notate lists
(section 6.3.2).

' The single quote character is used to indicate literal data
(section 4.1.2).

� The backquote character is used to indicate almost-
constant data (section 4.2.6).

, ,@ The character comma and the sequence comma at-
sign are used in conjunction with backquote (sec-
tion 4.2.6).

" The double quote character is used to delimit strings
(section 6.3.5).
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\ Backslash is used in the syntax for character constants
(section 6.3.4) and as an escape character within string
constants (section 6.3.5).

[ ] { } | Left and right square brackets and curly braces
and vertical bar are reserved for possible future exten-
sions to the language.

# Sharp sign is used for a variety of purposes depending
on the character that immediately follows it:

#t #f These are the boolean constants (section 6.3.1).
#\ This introduces a character constant (section 6.3.4).
#( This introduces a vector constant (section 6.3.6). Vec-

tor constants are terminated by ) .
#e #i #b #o #d #x These are used in the notation for

numbers (section 6.2.4).

3. Basic concepts
3.1. Variables, syntactic keywords, and re-

gions

An identi�er may name a type of syntax, or it may name
a location where a value can be stored. An identi�er that
names a type of syntax is called a syntactic keyword and is
said to be bound to that syntax. An identi�er that names
a location is called a variable and is said to be bound to
that location. The set of all visible bindings in e�ect at
some point in a program is known as the environment in
e�ect at that point. The value stored in the location to
which a variable is bound is called the variable's value.
By abuse of terminology, the variable is sometimes said
to name the value or to be bound to the value. This is
not quite accurate, but confusion rarely results from this
practice.
Certain expression types are used to create new kinds of
syntax and bind syntactic keywords to those new syntaxes,
while other expression types create new locations and bind
variables to those locations. These expression types are
called binding constructs. Those that bind syntactic key-
words are listed in section 4.3. The most fundamental of
the variable binding constructs is the lambda expression,
because all other variable binding constructs can be ex-
plained in terms of lambda expressions. The other variable
binding constructs are let, let*, letrec, and do expres-
sions (see sections 4.1.4, 4.2.2, and 4.2.4).
Like Algol and Pascal, and unlike most other dialects of
Lisp except for Common Lisp, Scheme is a statically scoped
language with block structure. To each place where an
identi�er is bound in a program there corresponds a region
of the program text within which the binding is visible.

The region is determined by the particular binding con-
struct that establishes the binding; if the binding is estab-
lished by a lambda expression, for example, then its region
is the entire lambda expression. Every mention of an iden-
ti�er refers to the binding of the identi�er that established
the innermost of the regions containing the use. If there is
no binding of the identi�er whose region contains the use,
then the use refers to the binding for the variable in the
top level environment, if any (chapters 4 and 6); if there is
no binding for the identi�er, it is said to be unbound.

3.2. Disjointness of types

No object satis�es more than one of the following predi-
cates:

boolean? pair?
symbol? number?
char? string?
vector? port?
procedure?

These predicates de�ne the types boolean, pair, symbol,
number, char (or character), string, vector, port, and pro-
cedure. The empty list is a special object of its own type;
it satis�es none of the above predicates.
Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of a
conditional test. As explained in section 6.3.1, all values
count as true in such a test except for #f. This report uses
the word \true" to refer to any Scheme value except #f,
and the word \false" to refer to #f.

3.3. External representations

An important concept in Scheme (and Lisp) is that of the
external representation of an object as a sequence of char-
acters. For example, an external representation of the inte-
ger 28 is the sequence of characters \28", and an external
representation of a list consisting of the integers 8 and 13
is the sequence of characters \(8 13)".
The external representation of an object is not neces-
sarily unique. The integer 28 also has representations
\#e28.000" and \#x1c", and the list in the previous para-
graph also has the representations \( 08 13 )" and \(8
. (13 . ()))" (see section 6.3.2).
Many objects have standard external representations, but
some, such as procedures, do not have standard represen-
tations (although particular implementations may de�ne
representations for them).
An external representation may be written in a program to
obtain the corresponding object (see quote, section 4.1.2).
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External representations can also be used for input and
output. The procedure read (section 6.6.2) parses external
representations, and the procedure write (section 6.6.3)
generates them. Together, they provide an elegant and
powerful input/output facility.
Note that the sequence of characters \(+ 2 6)" is not an
external representation of the integer 8, even though it is an
expression evaluating to the integer 8; rather, it is an exter-
nal representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Scheme's
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object. This can lead to confusion, since it may not
be obvious out of context whether a given sequence of char-
acters is intended to denote data or program, but it is also
a source of power, since it facilitates writing programs such
as interpreters and compilers that treat programs as data
(or vice versa).
The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter 6.

3.4. Storage model

Variables and objects such as pairs, vectors, and strings
implicitly denote locations or sequences of locations. A
string, for example, denotes as many locations as there
are characters in the string. (These locations need not
correspond to a full machine word.) A new value may be
stored into one of these locations using the string-set!
procedure, but the string continues to denote the same
locations as before.
An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section 6.1) to the object
last stored in the location before the fetch.
Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
Whenever this report speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use, and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to denote them.
In many systems it is desirable for constants (i.e. the val-
ues of literal expressions) to reside in read-only-memory.
To express this, it is convenient to imagine that every
object that denotes locations is associated with a 
ag
telling whether that object is mutable or immutable. In
such systems literal constants and the strings returned by
symbol->string are immutable objects, while all objects

created by the other procedures listed in this report are
mutable. It is an error to attempt to store a new value
into a location that is denoted by an immutable object.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly tail-
recursive. Procedure calls that occur in certain syntactic
contexts de�ned below are `tail calls'. A Scheme imple-
mentation is properly tail-recursive if it supports an un-
bounded number of active tail calls. A call is active if
the called procedure may still return. Note that this in-
cludes calls that may be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal de�nition of proper tail recur-
sion can be found in [8].
Rationale:
Intuitively, no space is needed for an active tail call because the
continuation that is used in the tail call has the same semantics
as the continuation passed to the procedure containing the call.
Although an improper implementation might use a new con-
tinuation in the call, a return to this new continuation would
be followed immediately by a return to the continuation passed
to the procedure. A properly tail-recursive implementation re-
turns to that continuation directly.
Proper tail recursion was one of the central ideas in Steele and
Sussman's original version of Scheme. Their �rst Scheme in-
terpreter implemented both functions and actors. Control 
ow
was expressed using actors, which di�ered from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor �nished with a tail call to another actor.
Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.
A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are de�ned inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

� The last expression within the body of a lambda ex-
pression, shown as htail expressioni below, occurs in a
tail context.
(lambda hformalsi
hde�nitioni* hexpressioni* htail expressioni)

� If one of the following expressions is in a tail context,
then the subexpressions shown as htail expressioni are
in a tail context. These were derived from rules in
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the grammar given in chapter 7 by replacing some oc-
currences of hexpressioni with htail expressioni. Only
those rules that contain tail contexts are shown here.

(if hexpressioni htail expressioni htail expressioni)
(if hexpressioni htail expressioni)
(cond hcond clausei+)
(cond hcond clausei* (else htail sequencei))
(case hexpressioni
hcase clausei+)

(case hexpressioni
hcase clausei*
(else htail sequencei))

(and hexpressioni* htail expressioni)
(or hexpressioni* htail expressioni)
(let (hbinding speci*) htail bodyi)
(let hvariablei (hbinding speci*) htail bodyi)
(let* (hbinding speci*) htail bodyi)
(letrec (hbinding speci*) htail bodyi)
(let-syntax (hsyntax speci*) htail bodyi)
(letrec-syntax (hsyntax speci*) htail bodyi)
(begin htail sequencei)
(do (hiteration speci*)

(htesti htail sequencei)
hexpressioni*)

where
hcond clausei �! (htesti htail sequencei)
hcase clausei �! ((hdatumi*) htail sequencei)
htail bodyi �! hde�nitioni* htail sequencei
htail sequencei �! hexpressioni* htail expressioni

� If a cond expression is in a tail context, and has a
clause of the form (hexpression1i => hexpression2i)
then the (implied) call to the procedure that results
from the evaluation of hexpression2i is in a tail context.
hexpression2i itself is not in a tail context.

Certain built-in procedures are also required to perform
tail calls. The �rst argument passed to apply and to
call-with-current-continuation, and the second argu-
ment passed to call-with-values, must be called via a
tail call. Similarly, eval must evaluate its argument as if
it were in tail position within the eval procedure.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()
(if (g)

(let ((x (h)))
x)

(and (g) (f))))

Note: Implementations are allowed, but not required, to recog-
nize that some non-tail calls, such as the call to h above, can be
evaluated as though they were tail calls. In the example above,
the let expression could be compiled as a tail call to h. (The
possibility of h returning an unexpected number of values can
be ignored, because in that case the e�ect of the let is explicitly
unspeci�ed and implementation-dependent.)

4. Expressions
Expression types are categorized as primitive or derived.
Primitive expression types include variables and procedure
calls. Derived expression types are not semantically prim-
itive, but can instead be de�ned as macros. With the ex-
ception of quasiquote, whose macro de�nition is complex,
the derived expressions are classi�ed as library features.
Suitable de�nitions are given in section 7.3.

4.1. Primitive expression types

4.1.1. Variable references

hvariablei syntax
An expression consisting of a variable (section 3.1) is a
variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is an error to reference an unbound variable.

(define x 28)
x =) 28

4.1.2. Literal expressions

(quote hdatumi) syntax
'hdatumi syntax
hconstanti syntax
(quote hdatumi) evaluates to hdatumi. hDatumi may be
any external representation of a Scheme object (see sec-
tion 3.3). This notation is used to include literal constants
in Scheme code.

(quote a) =) a
(quote #(a b c)) =) #(a b c)
(quote (+ 1 2)) =) (+ 1 2)
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(quote hdatumi) may be abbreviated as 'hdatumi. The
two notations are equivalent in all respects.

'a =) a
'#(a b c) =) #(a b c)
'() =) ()
'(+ 1 2) =) (+ 1 2)
'(quote a) =) (quote a)
''a =) (quote a)

Numerical constants, string constants, character constants,
and boolean constants evaluate \to themselves"; they need
not be quoted.

'"abc" =) "abc"
"abc" =) "abc"
'145932 =) 145932
145932 =) 145932
'#t =) #t
#t =) #t

As noted in section 3.4, it is an error to alter a constant
(i.e. the value of a literal expression) using a mutation pro-
cedure like set-car! or string-set!.

4.1.3. Procedure calls

(hoperatori hoperand1i : : : ) syntax
A procedure call is written by simply enclosing in paren-
theses expressions for the procedure to be called and the
arguments to be passed to it. The operator and operand
expressions are evaluated (in an unspeci�ed order) and the
resulting procedure is passed the resulting arguments.

(+ 3 4) =) 7
((if #f + *) 3 4) =) 12

A number of procedures are available as the values of vari-
ables in the initial environment; for example, the addition
and multiplication procedures in the above examples are
the values of the variables + and *. New procedures are cre-
ated by evaluating lambda expressions (see section 4.1.4).
Procedure calls may return any number of values (see
values in section 6.4). With the exception of values the
procedures available in the initial environment return one
value or, for procedures such as apply, pass on the values
returned by a call to one of their arguments.
Procedure calls are also called combinations.
Note: In contrast to other dialects of Lisp, the order of
evaluation is unspeci�ed, and the operator expression and the
operand expressions are always evaluated with the same evalu-
ation rules.
Note: Although the order of evaluation is otherwise unspeci-
�ed, the e�ect of any concurrent evaluation of the operator and
operand expressions is constrained to be consistent with some
sequential order of evaluation. The order of evaluation may be
chosen di�erently for each procedure call.

Note: In many dialects of Lisp, the empty combination, (),
is a legitimate expression. In Scheme, combinations must have
at least one subexpression, so () is not a syntactically valid
expression.

4.1.4. Procedures
(lambda hformalsi hbodyi) syntax
Syntax: hFormalsi should be a formal arguments list as
described below, and hbodyi should be a sequence of one
or more expressions.
Semantics: A lambda expression evaluates to a procedure.
The environment in e�ect when the lambda expression was
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the lambda expression was evalu-
ated will be extended by binding the variables in the formal
argument list to fresh locations, the corresponding actual
argument values will be stored in those locations, and the
expressions in the body of the lambda expression will be
evaluated sequentially in the extended environment. The
result(s) of the last expression in the body will be returned
as the result(s) of the procedure call.

(lambda (x) (+ x x)) =) a procedure
((lambda (x) (+ x x)) 4) =) 8
(define reverse-subtract

(lambda (x y) (- y x)))
(reverse-subtract 7 10) =) 3
(define add4

(let ((x 4))
(lambda (y) (+ x y))))

(add4 6) =) 10
hFormalsi should have one of the following forms:
� (hvariable1i : : : ): The procedure takes a �xed num-
ber of arguments; when the procedure is called, the
arguments will be stored in the bindings of the corre-
sponding variables.

� hvariablei: The procedure takes any number of ar-
guments; when the procedure is called, the sequence
of actual arguments is converted into a newly allo-
cated list, and the list is stored in the binding of the
hvariablei.

� (hvariable1i : : : hvariableni . hvariablen+1i): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n
is the number of formal arguments before the period
(there must be at least one). The value stored in the
binding of the last variable will be a newly allocated
list of the actual arguments left over after all the other
actual arguments have been matched up against the
other formal arguments.
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It is an error for a hvariablei to appear more than once in
hformalsi.

((lambda x x) 3 4 5 6) =) (3 4 5 6)
((lambda (x y . z) z)
3 4 5 6) =) (5 6)

Each procedure created as the result of evaluating a lambda
expression is (conceptually) tagged with a storage location,
in order to make eqv? and eq? work on procedures (see
section 6.1).

4.1.5. Conditionals

(if htesti hconsequenti halternatei) syntax
(if htesti hconsequenti) syntax
Syntax: hTesti, hconsequenti, and halternatei may be arbi-
trary expressions.
Semantics: An if expression is evaluated as follows: �rst,
htesti is evaluated. If it yields a true value (see sec-
tion 6.3.1), then hconsequenti is evaluated and its value(s)
is(are) returned. Otherwise halternatei is evaluated and its
value(s) is(are) returned. If htesti yields a false value and
no halternatei is speci�ed, then the result of the expression
is unspeci�ed.

(if (> 3 2) 'yes 'no) =) yes
(if (> 2 3) 'yes 'no) =) no
(if (> 3 2)

(- 3 2)
(+ 3 2)) =) 1

4.1.6. Assignments

(set! hvariablei hexpressioni) syntax
hExpressioni is evaluated, and the resulting value is stored
in the location to which hvariablei is bound. hVariablei
must be bound either in some region enclosing the set!
expression or at top level. The result of the set! expression
is unspeci�ed.

(define x 2)
(+ x 1) =) 3
(set! x 4) =) unspeci�ed
(+ x 1) =) 5

4.2. Derived expression types

The constructs in this section are hygienic, as discussed
in section 4.3. For reference purposes, section 7.3 gives
macro de�nitions that will convert most of the constructs
described in this section into the primitive constructs de-
scribed in the previous section.

4.2.1. Conditionals

(cond hclause1i hclause2i : : : ) library syntax
Syntax: Each hclausei should be of the form

(htesti hexpression1i : : : )
where htesti is any expression. Alternatively, a hclausei
may be of the form

(htesti => hexpressioni)
The last hclausei may be an \else clause," which has the
form

(else hexpression1i hexpression2i : : : ).
Semantics: A cond expression is evaluated by evaluating
the htesti expressions of successive hclauseis in order until
one of them evaluates to a true value (see section 6.3.1).
When a htesti evaluates to a true value, then the remain-
ing hexpressionis in its hclausei are evaluated in order,
and the result(s) of the last hexpressioni in the hclausei
is(are) returned as the result(s) of the entire cond expres-
sion. If the selected hclausei contains only the htesti and no
hexpressionis, then the value of the htesti is returned as the
result. If the selected hclausei uses the => alternate form,
then the hexpressioni is evaluated. Its value must be a pro-
cedure that accepts one argument; this procedure is then
called on the value of the htesti and the value(s) returned
by this procedure is(are) returned by the cond expression.
If all htestis evaluate to false values, and there is no else
clause, then the result of the conditional expression is un-
speci�ed; if there is an else clause, then its hexpressionis are
evaluated, and the value(s) of the last one is(are) returned.

(cond ((> 3 2) 'greater)
((< 3 2) 'less)) =) greater

(cond ((> 3 3) 'greater)
((< 3 3) 'less)
(else 'equal)) =) equal

(cond ((assv 'b '((a 1) (b 2))) => cadr)
(else #f)) =) 2

(case hkeyi hclause1i hclause2i : : : ) library syntax
Syntax: hKeyi may be any expression. Each hclausei
should have the form

((hdatum1i : : : ) hexpression1i hexpression2i : : : ),
where each hdatumi is an external representation of some
object. All the hdatumis must be distinct. The last
hclausei may be an \else clause," which has the form

(else hexpression1i hexpression2i : : : ).
Semantics: A case expression is evaluated as follows.
hKeyi is evaluated and its result is compared against each
hdatumi. If the result of evaluating hkeyi is equivalent
(in the sense of eqv?; see section 6.1) to a hdatumi, then
the expressions in the corresponding hclausei are evaluated
from left to right and the result(s) of the last expression in



4. Expressions 11

the hclausei is(are) returned as the result(s) of the case ex-
pression. If the result of evaluating hkeyi is di�erent from
every hdatumi, then if there is an else clause its expres-
sions are evaluated and the result(s) of the last is(are) the
result(s) of the case expression; otherwise the result of the
case expression is unspeci�ed.

(case (* 2 3)
((2 3 5 7) 'prime)
((1 4 6 8 9) 'composite)) =) composite

(case (car '(c d))
((a) 'a)
((b) 'b)) =) unspeci�ed

(case (car '(c d))
((a e i o u) 'vowel)
((w y) 'semivowel)
(else 'consonant)) =) consonant

(and htest1i : : : ) library syntax
The htesti expressions are evaluated from left to right, and
the value of the �rst expression that evaluates to a false
value (see section 6.3.1) is returned. Any remaining ex-
pressions are not evaluated. If all the expressions evaluate
to true values, the value of the last expression is returned.
If there are no expressions then #t is returned.

(and (= 2 2) (> 2 1)) =) #t
(and (= 2 2) (< 2 1)) =) #f
(and 1 2 'c '(f g)) =) (f g)
(and) =) #t

(or htest1i : : : ) library syntax
The htesti expressions are evaluated from left to right, and
the value of the �rst expression that evaluates to a true
value (see section 6.3.1) is returned. Any remaining ex-
pressions are not evaluated. If all expressions evaluate to
false values, the value of the last expression is returned. If
there are no expressions then #f is returned.

(or (= 2 2) (> 2 1)) =) #t
(or (= 2 2) (< 2 1)) =) #t
(or #f #f #f) =) #f
(or (memq 'b '(a b c))

(/ 3 0)) =) (b c)

4.2.2. Binding constructs
The three binding constructs let, let*, and letrec give
Scheme a block structure, like Algol 60. The syntax of the
three constructs is identical, but they di�er in the regions
they establish for their variable bindings. In a let ex-
pression, the initial values are computed before any of the
variables become bound; in a let* expression, the bind-
ings and evaluations are performed sequentially; while in a
letrec expression, all the bindings are in e�ect while their

initial values are being computed, thus allowing mutually
recursive de�nitions.

(let hbindingsi hbodyi) library syntax
Syntax: hBindingsi should have the form

((hvariable1i hinit1i) : : : ),
where each hiniti is an expression, and hbodyi should be a
sequence of one or more expressions. It is an error for a
hvariablei to appear more than once in the list of variables
being bound.
Semantics: The hinitis are evaluated in the current envi-
ronment (in some unspeci�ed order), the hvariableis are
bound to fresh locations holding the results, the hbodyi is
evaluated in the extended environment, and the value(s) of
the last expression of hbodyi is(are) returned. Each bind-
ing of a hvariablei has hbodyi as its region.

(let ((x 2) (y 3))
(* x y)) =) 6

(let ((x 2) (y 3))
(let ((x 7)

(z (+ x y)))
(* z x))) =) 35

See also named let, section 4.2.4.

(let* hbindingsi hbodyi) library syntax
Syntax: hBindingsi should have the form

((hvariable1i hinit1i) : : : ),
and hbodyi should be a sequence of one or more expres-
sions.
Semantics: Let* is similar to let, but the bindings are
performed sequentially from left to right, and the region of
a binding indicated by (hvariablei hiniti) is that part of
the let* expression to the right of the binding. Thus the
second binding is done in an environment in which the �rst
binding is visible, and so on.

(let ((x 2) (y 3))
(let* ((x 7)

(z (+ x y)))
(* z x))) =) 70

(letrec hbindingsi hbodyi) library syntax
Syntax: hBindingsi should have the form

((hvariable1i hinit1i) : : : ),
and hbodyi should be a sequence of one or more expres-
sions. It is an error for a hvariablei to appear more than
once in the list of variables being bound.
Semantics: The hvariableis are bound to fresh locations
holding unde�ned values, the hinitis are evaluated in the
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resulting environment (in some unspeci�ed order), each
hvariablei is assigned to the result of the corresponding
hiniti, the hbodyi is evaluated in the resulting environment,
and the value(s) of the last expression in hbodyi is(are) re-
turned. Each binding of a hvariablei has the entire letrec
expression as its region, making it possible to de�ne mutu-
ally recursive procedures.

(letrec ((even?
(lambda (n)

(if (zero? n)
#t
(odd? (- n 1)))))

(odd?
(lambda (n)

(if (zero? n)
#f
(even? (- n 1))))))

(even? 88))
=) #t

One restriction on letrec is very important: it must be
possible to evaluate each hiniti without assigning or refer-
ring to the value of any hvariablei. If this restriction is
violated, then it is an error. The restriction is necessary
because Scheme passes arguments by value rather than by
name. In the most common uses of letrec, all the hinitis
are lambda expressions and the restriction is satis�ed au-
tomatically.

4.2.3. Sequencing

(begin hexpression1i hexpression2i : : : ) library syntax
The hexpressionis are evaluated sequentially from left to
right, and the value(s) of the last hexpressioni is(are) re-
turned. This expression type is used to sequence side ef-
fects such as input and output.

(define x 0)
(begin (set! x 5)

(+ x 1)) =) 6
(begin (display "4 plus 1 equals ")

(display (+ 4 1))) =) unspeci�ed
and prints 4 plus 1 equals 5

4.2.4. Iteration
(do ((hvariable1i hinit1i hstep1i) library syntax

: : : )
(htesti hexpressioni : : : )

hcommandi : : : )
Do is an iteration construct. It speci�es a set of variables
to be bound, how they are to be initialized at the start,
and how they are to be updated on each iteration. When a

termination condition is met, the loop exits after evaluating
the hexpressionis.
Do expressions are evaluated as follows: The hiniti ex-
pressions are evaluated (in some unspeci�ed order), the
hvariableis are bound to fresh locations, the results of
the hiniti expressions are stored in the bindings of the
hvariableis, and then the iteration phase begins.
Each iteration begins by evaluating htesti; if the result is
false (see section 6.3.1), then the hcommandi expressions
are evaluated in order for e�ect, the hstepi expressions
are evaluated in some unspeci�ed order, the hvariableis
are bound to fresh locations, the results of the hstepis are
stored in the bindings of the hvariableis, and the next iter-
ation begins.
If htesti evaluates to a true value, then the hexpressionis
are evaluated from left to right and the value(s) of the
last hexpressioni is(are) returned. If no hexpressionis are
present, then the value of the do expression is unspeci�ed.
The region of the binding of a hvariablei consists of the
entire do expression except for the hinitis. It is an error
for a hvariablei to appear more than once in the list of do
variables.
A hstepi may be omitted, in which case the e�ect is the
same as if (hvariablei hiniti hvariablei) had been written
instead of (hvariablei hiniti).

(do ((vec (make-vector 5))
(i 0 (+ i 1)))

((= i 5) vec)
(vector-set! vec i i)) =) #(0 1 2 3 4)

(let ((x '(1 3 5 7 9)))
(do ((x x (cdr x))

(sum 0 (+ sum (car x))))
((null? x) sum))) =) 25

(let hvariablei hbindingsi hbodyi) library syntax
\Named let" is a variant on the syntax of let which pro-
vides a more general looping construct than do and may
also be used to express recursions. It has the same syn-
tax and semantics as ordinary let except that hvariablei
is bound within hbodyi to a procedure whose formal argu-
ments are the bound variables and whose body is hbodyi.
Thus the execution of hbodyi may be repeated by invoking
the procedure named by hvariablei.

(let loop ((numbers '(3 -2 1 6 -5))
(nonneg '())
(neg '()))

(cond ((null? numbers) (list nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)

(cons (car numbers) nonneg)
neg))

((< (car numbers) 0)
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(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))))

=) ((6 1 3) (-5 -2))

4.2.5. Delayed evaluation

(delay hexpressioni) library syntax
The delay construct is used together with the proce-
dure force to implement lazy evaluation or call by need.
(delay hexpressioni) returns an object called a promise
which at some point in the future may be asked (by the
force procedure) to evaluate hexpressioni, and deliver the
resulting value. The e�ect of hexpressioni returning multi-
ple values is unspeci�ed.
See the description of force (section 6.4) for a more com-
plete description of delay.

4.2.6. Quasiquotation

(quasiquote hqq templatei) syntax
�hqq templatei syntax
\Backquote" or \quasiquote" expressions are useful for
constructing a list or vector structure when most but not
all of the desired structure is known in advance. If no
commas appear within the hqq templatei, the result of
evaluating �hqq templatei is equivalent to the result of
evaluating 'hqq templatei. If a comma appears within
the hqq templatei, however, the expression following the
comma is evaluated (\unquoted") and its result is inserted
into the structure instead of the comma and the expres-
sion. If a comma appears followed immediately by an at-
sign (@), then the following expression must evaluate to
a list; the opening and closing parentheses of the list are
then \stripped away" and the elements of the list are in-
serted in place of the comma at-sign expression sequence.
A comma at-sign should only appear within a list or vector
hqq templatei.

�(list ,(+ 1 2) 4) =) (list 3 4)
(let ((name 'a)) �(list ,name ',name))

=) (list a (quote a))
�(a ,(+ 1 2) ,@(map abs '(4 -5 6)) b)

=) (a 3 4 5 6 b)
�(( foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons)))

=) ((foo 7) . cons)
�#(10 5 ,(sqrt 4) ,@(map sqrt '(16 9)) 8)

=) #(10 5 2 4 3 8)
Quasiquote forms may be nested. Substitutions are made
only for unquoted components appearing at the same nest-
ing level as the outermost backquote. The nesting level in-
creases by one inside each successive quasiquotation, and
decreases by one inside each unquotation.

�(a �(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)
=) (a �(b ,(+ 1 2) ,(foo 4 d) e) f)

(let ((name1 'x)
(name2 'y))

�(a �(b ,,name1 ,',name2 d) e))
=) (a �(b ,x ,'y d) e)

The two notations �hqq templatei and (quasiquote
hqq templatei) are identical in all respects. ,hexpressioni
is identical to (unquote hexpressioni), and ,@hexpressioni
is identical to (unquote-splicing hexpressioni). The ex-
ternal syntax generated by write for two-element lists
whose car is one of these symbols may vary between im-
plementations.

(quasiquote (list (unquote (+ 1 2)) 4))
=) (list 3 4)

'(quasiquote (list (unquote (+ 1 2)) 4))
=) �(list ,(+ 1 2) 4)

i.e., (quasiquote (list (unquote (+ 1 2)) 4))
Unpredictable behavior can result if any of the symbols
quasiquote, unquote, or unquote-splicing appear in po-
sitions within a hqq templatei otherwise than as described
above.

4.3. Macros
Scheme programs can de�ne and use new derived expres-
sion types, called macros. Program-de�ned expression
types have the syntax

(hkeywordi hdatumi ...)
where hkeywordi is an identi�er that uniquely determines
the expression type. This identi�er is called the syntactic
keyword, or simply keyword, of the macro. The number of
the hdatumis, and their syntax, depends on the expression
type.
Each instance of a macro is called a use of the macro. The
set of rules that speci�es how a use of a macro is transcribed
into a more primitive expression is called the transformer
of the macro.
The macro de�nition facility consists of two parts:

� A set of expressions used to establish that certain iden-
ti�ers are macro keywords, associate them with macro
transformers, and control the scope within which a
macro is de�ned, and

� a pattern language for specifying macro transformers.

The syntactic keyword of a macro may shadow variable
bindings, and local variable bindings may shadow keyword
bindings. All macros de�ned using the pattern language
are \hygienic" and \referentially transparent" and thus
preserve Scheme's lexical scoping [14, 15, 2, 7, 9]:
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� If a macro transformer inserts a binding for an identi-
�er (variable or keyword), the identi�er will in e�ect be
renamed throughout its scope to avoid con
icts with
other identi�ers. Note that a define at top level may
or may not introduce a binding; see section 5.2.

� If a macro transformer inserts a free reference to an
identi�er, the reference refers to the binding that was
visible where the transformer was speci�ed, regardless
of any local bindings that may surround the use of the
macro.

4.3.1. Binding constructs for syntactic keywords
Let-syntax and letrec-syntax are analogous to let and
letrec, but they bind syntactic keywords to macro trans-
formers instead of binding variables to locations that con-
tain values. Syntactic keywords may also be bound at top
level; see section 5.3.

(let-syntax hbindingsi hbodyi) syntax
Syntax: hBindingsi should have the form

((hkeywordi htransformer speci) : : : )
Each hkeywordi is an identi�er, each htransformer speci
is an instance of syntax-rules, and hbodyi should be a
sequence of one or more expressions. It is an error for a
hkeywordi to appear more than once in the list of keywords
being bound.
Semantics: The hbodyi is expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax expression with macros whose keywords
are the hkeywordis, bound to the speci�ed transformers.
Each binding of a hkeywordi has hbodyi as its region.

(let-syntax ((when (syntax-rules ()
((when test stmt1 stmt2 ...)
(if test

(begin stmt1
stmt2 ...))))))

(let ((if #t))
(when if (set! if 'now))
if)) =) now

(let ((x 'outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x 'inner))

(m)))) =) outer

(letrec-syntax hbindingsi hbodyi) syntax
Syntax: Same as for let-syntax.
Semantics: The hbodyi is expanded in the syntactic envi-
ronment obtained by extending the syntactic environment

of the letrec-syntax expression with macros whose key-
words are the hkeywordis, bound to the speci�ed trans-
formers. Each binding of a hkeywordi has the hbindingsi
as well as the hbodyi within its region, so the transformers
can transcribe expressions into uses of the macros intro-
duced by the letrec-syntax expression.

(letrec-syntax
((my-or (syntax-rules ()

((my-or) #f)
((my-or e) e)
((my-or e1 e2 ...)
(let ((temp e1))

(if temp
temp
(my-or e2 ...)))))))

(let ((x #f)
(y 7)
(temp 8)
(let odd?)
(if even?))

(my-or x
(let temp)
(if y)
y))) =) 7

4.3.2. Pattern language
A htransformer speci has the following form:

(syntax-rules hliteralsi hsyntax rulei : : : )
Syntax: hLiteralsi is a list of identi�ers and each
hsyntax rulei should be of the form

(hpatterni htemplatei)
The hpatterni in a hsyntax rulei is a list hpatterni that
begins with the keyword for the macro.
A hpatterni is either an identi�er, a constant, or one of the
following

(hpatterni ...)
(hpatterni hpatterni ... . hpatterni)
(hpatterni ... hpatterni hellipsisi)
#(hpatterni ...)
#(hpatterni ... hpatterni hellipsisi)

and a template is either an identi�er, a constant, or one of
the following

(helementi ...)
(helementi helementi ... . htemplatei)
#(helementi ...)

where an helementi is a htemplatei optionally followed by
an hellipsisi and an hellipsisi is the identi�er \..." (which
cannot be used as an identi�er in either a template or a
pattern).
Semantics: An instance of syntax-rules produces a new
macro transformer by specifying a sequence of hygienic
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rewrite rules. A use of a macro whose keyword is associated
with a transformer speci�ed by syntax-rules is matched
against the patterns contained in the hsyntax ruleis, be-
ginning with the leftmost hsyntax rulei. When a match is
found, the macro use is transcribed hygienically according
to the template.
An identi�er that appears in the pattern of a hsyntax rulei
is a pattern variable, unless it is the keyword that begins
the pattern, is listed in hliteralsi, or is the identi�er \...".
Pattern variables match arbitrary input elements and are
used to refer to elements of the input in the template. It
is an error for the same pattern variable to appear more
than once in a hpatterni.
The keyword at the beginning of the pattern in a
hsyntax rulei is not involved in the matching and is not
considered a pattern variable or literal identi�er.
Rationale: The scope of the keyword is determined by the
expression or syntax de�nition that binds it to the associated
macro transformer. If the keyword were a pattern variable or
literal identi�er, then the template that follows the pattern
would be within its scope regardless of whether the keyword
were bound by let-syntax or by letrec-syntax.
Identi�ers that appear in hliteralsi are interpreted as literal
identi�ers to be matched against corresponding subforms
of the input. A subform in the input matches a literal
identi�er if and only if it is an identi�er and either both its
occurrence in the macro expression and its occurrence in
the macro de�nition have the same lexical binding, or the
two identi�ers are equal and both have no lexical binding.
A subpattern followed by ... can match zero or more el-
ements of the input. It is an error for ... to appear in
hliteralsi. Within a pattern the identi�er ... must follow
the last element of a nonempty sequence of subpatterns.
More formally, an input form F matches a pattern P if and
only if:

� P is a non-literal identi�er; or
� P is a literal identi�er and F is an identi�er with the
same binding; or

� P is a list (P1 : : : Pn) and F is a list of n forms that
match P1 through Pn, respectively; or

� P is an improper list (P1 P2 : : : Pn . Pn+1) and
F is a list or improper list of n or more forms that
match P1 through Pn, respectively, and whose nth
\cdr" matches Pn+1; or

� P is of the form (P1 : : : Pn Pn+1 hellipsisi) where
hellipsisi is the identi�er ... and F is a proper list
of at least n forms, the �rst n of which match P1
through Pn, respectively, and each remaining element
of F matches Pn+1; or

� P is a vector of the form #(P1 : : : Pn) and F is a
vector of n forms that match P1 through Pn; or

� P is of the form #(P1 : : : Pn Pn+1 hellipsisi) where
hellipsisi is the identi�er ... and F is a vector of n or
more forms the �rst n of which match P1 through Pn,
respectively, and each remaining element of F matches
Pn+1; or

� P is a datum and F is equal to P in the sense of the
equal? procedure.

It is an error to use a macro keyword, within the scope of
its binding, in an expression that does not match any of
the patterns.
When a macro use is transcribed according to the template
of the matching hsyntax rulei, pattern variables that occur
in the template are replaced by the subforms they match
in the input. Pattern variables that occur in subpatterns
followed by one or more instances of the identi�er ... are
allowed only in subtemplates that are followed by as many
instances of .... They are replaced in the output by all
of the subforms they match in the input, distributed as
indicated. It is an error if the output cannot be built up
as speci�ed.
Identi�ers that appear in the template but are not pattern
variables or the identi�er ... are inserted into the output
as literal identi�ers. If a literal identi�er is inserted as a
free identi�er then it refers to the binding of that identi�er
within whose scope the instance of syntax-rules appears.
If a literal identi�er is inserted as a bound identi�er then
it is in e�ect renamed to prevent inadvertent captures of
free identi�ers.
As an example, if let and cond are de�ned as in section 7.3
then they are hygienic (as required) and the following is not
an error.

(let ((=> #f))
(cond (#t => 'ok))) =) ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the top-level
identi�er =>, which the macro transformer treats as a syn-
tactic keyword. Thus the example expands into

(let ((=> #f))
(if #t (begin => 'ok)))

instead of
(let ((=> #f))

(let ((temp #t))
(if temp ('ok temp))))

which would result in an invalid procedure call.
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5. Program structure
5.1. Programs

A Scheme program consists of a sequence of expressions,
de�nitions, and syntax de�nitions. Expressions are de-
scribed in chapter 4; de�nitions and syntax de�nitions are
the subject of the rest of the present chapter.
Programs are typically stored in �les or entered inter-
actively to a running Scheme system, although other
paradigms are possible; questions of user interface lie out-
side the scope of this report. (Indeed, Scheme would still be
useful as a notation for expressing computational methods
even in the absence of a mechanical implementation.)
De�nitions and syntax de�nitions occurring at the top level
of a program can be interpreted declaratively. They cause
bindings to be created in the top level environment or mod-
ify the value of existing top-level bindings. Expressions
occurring at the top level of a program are interpreted im-
peratively; they are executed in order when the program
is invoked or loaded, and typically perform some kind of
initialization.
At the top level of a program (begin hform1i : : : ) is
equivalent to the sequence of expressions, de�nitions, and
syntax de�nitions that form the body of the begin.

5.2. De�nitions

De�nitions are valid in some, but not all, contexts where
expressions are allowed. They are valid only at the top
level of a hprogrami and at the beginning of a hbodyi.
A de�nition should have one of the following forms:

� (define hvariablei hexpressioni)
� (define (hvariablei hformalsi) hbodyi)
hFormalsi should be either a sequence of zero or more
variables, or a sequence of one or more variables fol-
lowed by a space-delimited period and another vari-
able (as in a lambda expression). This form is equiv-
alent to

(define hvariablei
(lambda (hformalsi) hbodyi)).

� (define (hvariablei . hformali) hbodyi)
hFormali should be a single variable. This form is
equivalent to

(define hvariablei
(lambda hformali hbodyi)).

5.2.1. Top level de�nitions
At the top level of a program, a de�nition

(define hvariablei hexpressioni)
has essentially the same e�ect as the assignment expres-
sion

(set! hvariablei hexpressioni)
if hvariablei is bound. If hvariablei is not bound, however,
then the de�nition will bind hvariablei to a new location
before performing the assignment, whereas it would be an
error to perform a set! on an unbound variable.

(define add3
(lambda (x) (+ x 3)))

(add3 3) =) 6
(define first car)
(first '(1 2)) =) 1

Some implementations of Scheme use an initial environ-
ment in which all possible variables are bound to locations,
most of which contain unde�ned values. Top level de�ni-
tions in such an implementation are truly equivalent to
assignments.

5.2.2. Internal de�nitions
De�nitions may occur at the beginning of a hbodyi (that
is, the body of a lambda, let, let*, letrec, let-syntax,
or letrec-syntax expression or that of a de�nition of an
appropriate form). Such de�nitions are known as internal
de�nitions as opposed to the top level de�nitions described
above. The variable de�ned by an internal de�nition is
local to the hbodyi. That is, hvariablei is bound rather
than assigned, and the region of the binding is the entire
hbodyi. For example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (* a b) a)))
(foo (+ x 3))) =) 45

A hbodyi containing internal de�nitions can always be con-
verted into a completely equivalent letrec expression. For
example, the let expression in the above example is equiv-
alent to

(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))

(bar (lambda (a b) (+ (* a b) a))))
(foo (+ x 3))))

Just as for the equivalent letrec expression, it must be
possible to evaluate each hexpressioni of every internal def-
inition in a hbodyi without assigning or referring to the
value of any hvariablei being de�ned.
Wherever an internal de�nition may occur (begin
hde�nition1i : : : ) is equivalent to the sequence of de�ni-
tions that form the body of the begin.
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5.3. Syntax de�nitions

Syntax de�nitions are valid only at the top level of a
hprogrami. They have the following form:
(define-syntax hkeywordi htransformer speci)
hKeywordi is an identi�er, and the htransformer speci
should be an instance of syntax-rules. The top-level syn-
tactic environment is extended by binding the hkeywordi
to the speci�ed transformer.
There is no define-syntax analogue of internal de�ni-
tions.
Although macros may expand into de�nitions and syntax
de�nitions in any context that permits them, it is an error
for a de�nition or syntax de�nition to shadow a syntactic
keyword whose meaning is needed to determine whether
some form in the group of forms that contains the shad-
owing de�nition is in fact a de�nition, or, for internal def-
initions, is needed to determine the boundary between the
group and the expressions that follow the group. For ex-
ample, the following are errors:

(define define 3)
(begin (define begin list))
(let-syntax

((foo (syntax-rules ()
((foo (proc args ...) body ...)
(define proc

(lambda (args ...)
body ...))))))

(let ((x 3))
(foo (plus x y) (+ x y))
(define foo x)
(plus foo x)))

6. Standard procedures
This chapter describes Scheme's built-in procedures. The
initial (or \top level") Scheme environment starts out with
a number of variables bound to locations containing useful
values, most of which are primitive procedures that ma-
nipulate data. For example, the variable abs is bound to
(a location initially containing) a procedure of one argu-
ment that computes the absolute value of a number, and
the variable + is bound to a procedure that computes sums.
Built-in procedures that can easily be written in terms of
other built-in procedures are identi�ed as \library proce-
dures".
A program may use a top-level de�nition to bind any vari-
able. It may subsequently alter any such binding by an
assignment (see 4.1.6). These operations do not modify
the behavior of Scheme's built-in procedures. Altering any

top-level binding that has not been introduced by a de�ni-
tion has an unspeci�ed e�ect on the behavior of the built-in
procedures.

6.1. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #f). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation
(it is symmetric, re
exive, and transitive). Of the equiva-
lence predicates described in this section, eq? is the �nest
or most discriminating, and equal? is the coarsest. Eqv?
is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure
The eqv? procedure de�nes a useful equivalence relation
on objects. Brie
y, it returns #t if obj1 and obj2 should
normally be regarded as the same object. This relation is
left slightly open to interpretation, but the following par-
tial speci�cation of eqv? holds for all implementations of
Scheme.
The eqv? procedure returns #t if:

� obj1 and obj2 are both #t or both #f.
� obj1 and obj2 are both symbols and

(string=? (symbol->string obj1)
(symbol->string obj2))

=) #t

Note: This assumes that neither obj1 nor obj2 is an \un-
interned symbol" as alluded to in section 6.3.3. This re-
port does not presume to specify the behavior of eqv? on
implementation-dependent extensions.

� obj1 and obj2 are both numbers, are numerically equal
(see =, section 6.2), and are either both exact or both
inexact.

� obj1 and obj2 are both characters and are the same
character according to the char=? procedure (sec-
tion 6.3.4).

� both obj1 and obj2 are the empty list.
� obj1 and obj2 are pairs, vectors, or strings that denote
the same locations in the store (section 3.4).

� obj1 and obj2 are procedures whose location tags are
equal (section 4.1.4).

The eqv? procedure returns #f if:

� obj1 and obj2 are of di�erent types (section 3.2).
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� one of obj1 and obj2 is #t but the other is #f.
� obj1 and obj2 are symbols but

(string=? (symbol->string obj1)
(symbol->string obj2))

=) #f

� one of obj1 and obj2 is an exact number but the other
is an inexact number.

� obj1 and obj2 are numbers for which the = procedure
returns #f.

� obj1 and obj2 are characters for which the char=? pro-
cedure returns #f.

� one of obj1 and obj2 is the empty list but the other is
not.

� obj1 and obj2 are pairs, vectors, or strings that denote
distinct locations.

� obj1 and obj2 are procedures that would behave di�er-
ently (return di�erent value(s) or have di�erent side
e�ects) for some arguments.
(eqv? 'a 'a) =) #t
(eqv? 'a 'b) =) #f
(eqv? 2 2) =) #t
(eqv? '() '()) =) #t
(eqv? 100000000 100000000) =) #t
(eqv? (cons 1 2) (cons 1 2))=) #f
(eqv? (lambda () 1)

(lambda () 2)) =) #f
(eqv? #f 'nil) =) #f
(let ((p (lambda (x) x)))

(eqv? p p)) =) #t
The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "" "") =) unspeci�ed
(eqv? '#() '#()) =) unspeci�ed
(eqv? (lambda (x) x)

(lambda (x) x)) =) unspeci�ed
(eqv? (lambda (x) x)

(lambda (y) y)) =) unspeci�ed
The next set of examples shows the use of eqv? with pro-
cedures that have local state. Gen-counter must return a
distinct procedure every time, since each procedure has its
own internal counter. Gen-loser, however, returns equiv-
alent procedures each time, since the local state does not
a�ect the value or side e�ects of the procedures.

(define gen-counter
(lambda ()
(let ((n 0))

(lambda () (set! n (+ n 1)) n))))
(let ((g (gen-counter)))

(eqv? g g)) =) #t
(eqv? (gen-counter) (gen-counter))

=) #f
(define gen-loser

(lambda ()
(let ((n 0))

(lambda () (set! n (+ n 1)) 27))))
(let ((g (gen-loser)))

(eqv? g g)) =) #t
(eqv? (gen-loser) (gen-loser))

=) unspeci�ed
(letrec ((f (lambda () (if (eqv? f g) 'both 'f)))

(g (lambda () (if (eqv? f g) 'both 'g))))
(eqv? f g))

=) unspeci�ed
(letrec ((f (lambda () (if (eqv? f g) 'f 'both)))

(g (lambda () (if (eqv? f g) 'g 'both))))
(eqv? f g))

=) #f
Since it is an error to modify constant objects (those re-
turned by literal expressions), implementations are per-
mitted, though not required, to share structure between
constants where appropriate. Thus the value of eqv? on
constants is sometimes implementation-dependent.

(eqv? '(a) '(a)) =) unspeci�ed
(eqv? "a" "a") =) unspeci�ed
(eqv? '(b) (cdr '(a b))) =) unspeci�ed
(let ((x '(a)))

(eqv? x x)) =) #t
Rationale: The above de�nition of eqv? allows implementa-
tions latitude in their treatment of procedures and literals: im-
plementations are free either to detect or to fail to detect that
two procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equivalent
objects by using the same pointer or bit pattern to represent
both.

(eq? obj1 obj2) procedure
Eq? is similar to eqv? except that in some cases it is capable
of discerning distinctions �ner than those detectable by
eqv?.
Eq? and eqv? are guaranteed to have the same behavior on
symbols, booleans, the empty list, pairs, procedures, and
non-empty strings and vectors. Eq?'s behavior on numbers
and characters is implementation-dependent, but it will al-
ways return either true or false, and will return true only
when eqv? would also return true. Eq? may also behave
di�erently from eqv? on empty vectors and empty strings.
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(eq? 'a 'a) =) #t
(eq? '(a) '(a)) =) unspeci�ed
(eq? (list 'a) (list 'a)) =) #f
(eq? "a" "a") =) unspeci�ed
(eq? "" "") =) unspeci�ed
(eq? '() '()) =) #t
(eq? 2 2) =) unspeci�ed
(eq? #\A #\A) =) unspeci�ed
(eq? car car) =) #t
(let ((n (+ 2 3)))

(eq? n n)) =) unspeci�ed
(let ((x '(a)))

(eq? x x)) =) #t
(let ((x '#()))

(eq? x x)) =) #t
(let ((p (lambda (x) x)))

(eq? p p)) =) #t
Rationale: It will usually be possible to implement eq? much
more e�ciently than eqv?, for example, as a simple pointer com-
parison instead of as some more complicated operation. One
reason is that it may not be possible to compute eqv? of two
numbers in constant time, whereas eq? implemented as pointer
comparison will always �nish in constant time. Eq?may be used
like eqv? in applications using procedures to implement objects
with state since it obeys the same constraints as eqv?.

(equal? obj1 obj2) library procedure
Equal? recursively compares the contents of pairs, vectors,
and strings, applying eqv? on other objects such as num-
bers and symbols. A rule of thumb is that objects are
generally equal? if they print the same. Equal? may fail
to terminate if its arguments are circular data structures.

(equal? 'a 'a) =) #t
(equal? '(a) '(a)) =) #t
(equal? '(a (b) c)

'(a (b) c)) =) #t
(equal? "abc" "abc") =) #t
(equal? 2 2) =) #t
(equal? (make-vector 5 'a)

(make-vector 5 'a)) =) #t
(equal? (lambda (x) x)

(lambda (y) y)) =) unspeci�ed

6.2. Numbers
Numerical computation has traditionally been neglected
by the Lisp community. Until Common Lisp there was
no carefully thought out strategy for organizing numerical
computation, and with the exception of the MacLisp sys-
tem [20] little e�ort was made to execute numerical code
e�ciently. This report recognizes the excellent work of the
Common Lisp committee and accepts many of their rec-
ommendations. In some ways this report simpli�es and
generalizes their proposals in a manner consistent with the
purposes of Scheme.

It is important to distinguish between the mathemati-
cal numbers, the Scheme numbers that attempt to model
them, the machine representations used to implement the
Scheme numbers, and notations used to write numbers.
This report uses the types number, complex, real, rational,
and integer to refer to both mathematical numbers and
Scheme numbers. Machine representations such as �xed
point and 
oating point are referred to by names such as
�xnum and 
onum.

6.2.1. Numerical types
Mathematically, numbers may be arranged into a tower of
subtypes in which each level is a subset of the level above
it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational,
a real, and a complex. The same is true of the Scheme
numbers that model 3. For Scheme numbers, these types
are de�ned by the predicates number?, complex?, real?,
rational?, and integer?.
There is no simple relationship between a number's type
and its representation inside a computer. Although most
implementations of Scheme will o�er at least two di�erent
representations of 3, these di�erent representations denote
the same integer.
Scheme's numerical operations treat numbers as abstract
data, as independent of their representation as possible.
Although an implementation of Scheme may use �xnum,

onum, and perhaps other representations for numbers,
this should not be apparent to a casual programmer writing
simple programs.
It is necessary, however, to distinguish between numbers
that are represented exactly and those that may not be.
For example, indexes into data structures must be known
exactly, as must some polynomial coe�cients in a symbolic
algebra system. On the other hand, the results of measure-
ments are inherently inexact, and irrational numbers may
be approximated by rational and therefore inexact approx-
imations. In order to catch uses of inexact numbers where
exact numbers are required, Scheme explicitly distinguishes
exact from inexact numbers. This distinction is orthogonal
to the dimension of type.

6.2.2. Exactness
Scheme numbers are either exact or inexact. A number is
exact if it was written as an exact constant or was derived
from exact numbers using only exact operations. A number
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is inexact if it was written as an inexact constant, if it
was derived using inexact ingredients, or if it was derived
using inexact operations. Thus inexactness is a contagious
property of a number.
If two implementations produce exact results for a com-
putation that did not involve inexact intermediate results,
the two ultimate results will be mathematically equivalent.
This is generally not true of computations involving inex-
act numbers since approximate methods such as 
oating
point arithmetic may be used, but it is the duty of each
implementation to make the result as close as practical to
the mathematically ideal result.
Rational operations such as + should always produce ex-
act results when given exact arguments. If the operation
is unable to produce an exact result, then it may either
report the violation of an implementation restriction or it
may silently coerce its result to an inexact value. See sec-
tion 6.2.3.
With the exception of inexact->exact, the operations de-
scribed in this section must generally return inexact results
when given any inexact arguments. An operation may,
however, return an exact result if it can prove that the
value of the result is una�ected by the inexactness of its
arguments. For example, multiplication of any number by
an exact zero may produce an exact zero result, even if the
other argument is inexact.

6.2.3. Implementation restrictions
Implementations of Scheme are not required to implement
the whole tower of subtypes given in section 6.2.1, but
they must implement a coherent subset consistent with
both the purposes of the implementation and the spirit
of the Scheme language. For example, an implementation
in which all numbers are real may still be quite useful.
Implementations may also support only a limited range of
numbers of any type, subject to the requirements of this
section. The supported range for exact numbers of any
type may be di�erent from the supported range for inex-
act numbers of that type. For example, an implementation
that uses 
onums to represent all its inexact real numbers
may support a practically unbounded range of exact inte-
gers and rationals while limiting the range of inexact reals
(and therefore the range of inexact integers and rationals)
to the dynamic range of the 
onum format. Furthermore
the gaps between the representable inexact integers and ra-
tionals are likely to be very large in such an implementation
as the limits of this range are approached.
An implementation of Scheme must support exact integers
throughout the range of numbers that may be used for
indexes of lists, vectors, and strings or that may result
from computing the length of a list, vector, or string. The
length, vector-length, and string-length procedures

must return an exact integer, and it is an error to use
anything but an exact integer as an index. Furthermore
any integer constant within the index range, if expressed
by an exact integer syntax, will indeed be read as an exact
integer, regardless of any implementation restrictions that
may apply outside this range. Finally, the procedures listed
below will always return an exact integer result provided all
their arguments are exact integers and the mathematically
expected result is representable as an exact integer within
the implementation:

+ - *
quotient remainder modulo
max min abs
numerator denominator gcd
lcm floor ceiling
truncate round rationalize
expt

Implementations are encouraged, but not required, to sup-
port exact integers and exact rationals of practically unlim-
ited size and precision, and to implement the above proce-
dures and the / procedure in such a way that they always
return exact results when given exact arguments. If one of
these procedures is unable to deliver an exact result when
given exact arguments, then it may either report a vio-
lation of an implementation restriction or it may silently
coerce its result to an inexact number. Such a coercion
may cause an error later.
An implementation may use 
oating point and other ap-
proximate representation strategies for inexact numbers.
This report recommends, but does not require, that the
IEEE 32-bit and 64-bit 
oating point standards be followed
by implementations that use 
onum representations, and
that implementations using other representations should
match or exceed the precision achievable using these 
oat-
ing point standards [12].
In particular, implementations that use 
onum represen-
tations must follow these rules: A 
onum result must be
represented with at least as much precision as is used to
express any of the inexact arguments to that operation. It
is desirable (but not required) for potentially inexact oper-
ations such as sqrt, when applied to exact arguments, to
produce exact answers whenever possible (for example the
square root of an exact 4 ought to be an exact 2). If, how-
ever, an exact number is operated upon so as to produce an
inexact result (as by sqrt), and if the result is represented
as a 
onum, then the most precise 
onum format available
must be used; but if the result is represented in some other
way then the representation must have at least as much
precision as the most precise 
onum format available.
Although Scheme allows a variety of written notations for
numbers, any particular implementation may support only
some of them. For example, an implementation in which
all numbers are real need not support the rectangular and
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polar notations for complex numbers. If an implementa-
tion encounters an exact numerical constant that it cannot
represent as an exact number, then it may either report a
violation of an implementation restriction or it may silently
represent the constant by an inexact number.

6.2.4. Syntax of numerical constants
The syntax of the written representations for numbers is
described formally in section 7.1.1. Note that case is not
signi�cant in numerical constants.
A number may be written in binary, octal, decimal, or hex-
adecimal by the use of a radix pre�x. The radix pre�xes
are #b (binary), #o (octal), #d (decimal), and #x (hexadec-
imal). With no radix pre�x, a number is assumed to be
expressed in decimal.
A numerical constant may be speci�ed to be either exact or
inexact by a pre�x. The pre�xes are #e for exact, and #i
for inexact. An exactness pre�x may appear before or after
any radix pre�x that is used. If the written representation
of a number has no exactness pre�x, the constant may be
either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a \#" character in the place of a
digit, otherwise it is exact.
In systems with inexact numbers of varying precisions it
may be useful to specify the precision of a constant. For
this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the
inexact representation. The letters s, f, d, and l specify
the use of short , single, double, and long precision, respec-
tively. (When fewer than four internal inexact represen-
tations exist, the four size speci�cations are mapped onto
those available. For example, an implementation with two
internal representations may map short and single together
and long and double together.) In addition, the exponent
marker e speci�es the default precision for the implemen-
tation. The default precision has at least as much precision
as double, but implementations may wish to allow this de-
fault to be set by the user.

3.14159265358979F0
Round to single | 3.141593

0.6L0
Extend to long | .600000000000000

6.2.5. Numerical operations
The reader is referred to section 1.3.3 for a summary of
the naming conventions used to specify restrictions on the
types of arguments to numerical routines. The examples
used in this section assume that any numerical constant
written using an exact notation is indeed represented as
an exact number. Some examples also assume that certain
numerical constants written using an inexact notation can

be represented without loss of accuracy; the inexact con-
stants were chosen so that this is likely to be true in imple-
mentations that use 
onums to represent inexact numbers.

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure
These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
object is of the named type, and otherwise they return #f.
In general, if a type predicate is true of a number then
all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.
If z is an inexact complex number, then (real? z) is true
if and only if (zero? (imag-part z)) is true. If x is an
inexact real number, then (integer? x) is true if and only
if (= x (round x)).

(complex? 3+4i) =) #t
(complex? 3) =) #t
(real? 3) =) #t
(real? -2.5+0.0i) =) #t
(real? #e1e10) =) #t
(rational? 6/10) =) #t
(rational? 6/3) =) #t
(integer? 3+0i) =) #t
(integer? 3.0) =) #t
(integer? 8/4) =) #t

Note: The behavior of these type predicates on inexact num-
bers is unreliable, since any inaccuracy may a�ect the result.
Note: In many implementations the rational? procedure will
be the same as real?, and the complex? procedure will be the
same as number?, but unusual implementations may be able
to represent some irrational numbers exactly or may extend the
number system to support some kind of non-complex numbers.

(exact? z) procedure
(inexact? z) procedure
These numerical predicates provide tests for the exactness
of a quantity. For any Scheme number, precisely one of
these predicates is true.

(= z1 z2 z3 : : : ) procedure
(< x1 x2 x3 : : : ) procedure
(> x1 x2 x3 : : : ) procedure
(<= x1 x2 x3 : : : ) procedure
(>= x1 x2 x3 : : : ) procedure
These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing.
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These predicates are required to be transitive.
Note: The traditional implementations of these predicates in
Lisp-like languages are not transitive.
Note: While it is not an error to compare inexact numbers
using these predicates, the results may be unreliable because a
small inaccuracy may a�ect the result; this is especially true of
= and zero?. When in doubt, consult a numerical analyst.

(zero? z) library procedure
(positive? x) library procedure
(negative? x) library procedure
(odd? n) library procedure
(even? n) library procedure
These numerical predicates test a number for a particular
property, returning #t or #f. See note above.

(max x1 x2 : : : ) library procedure
(min x1 x2 : : : ) library procedure
These procedures return the maximum or minimum of their
arguments.

(max 3 4) =) 4 ; exact
(max 3.9 4) =) 4.0 ; inexact

Note: If any argument is inexact, then the result will also be
inexact (unless the procedure can prove that the inaccuracy is
not large enough to a�ect the result, which is possible only in
unusual implementations). If min or max is used to compare
numbers of mixed exactness, and the numerical value of the
result cannot be represented as an inexact number without loss
of accuracy, then the procedure may report a violation of an
implementation restriction.

(+ z1 : : : ) procedure
(* z1 : : : ) procedure
These procedures return the sum or product of their argu-
ments.

(+ 3 4) =) 7
(+ 3) =) 3
(+) =) 0
(* 4) =) 4
(*) =) 1

(- z1 z2) procedure
(- z) procedure
(- z1 z2 : : : ) optional procedure
(/ z1 z2) procedure
(/ z) procedure
(/ z1 z2 : : : ) optional procedure
With two or more arguments, these procedures return the
di�erence or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument.

(- 3 4) =) -1
(- 3 4 5) =) -6
(- 3) =) -3
(/ 3 4 5) =) 3/20
(/ 3) =) 1/3

(abs x) library procedure
Abs returns the absolute value of its argument.

(abs -7) =) 7

(quotient n1 n2) procedure
(remainder n1 n2) procedure
(modulo n1 n2) procedure
These procedures implement number-theoretic (integer) di-
vision. n2 should be non-zero. All three procedures return
integers. If n1/n2 is an integer:

(quotient n1 n2) =) n1/n2
(remainder n1 n2) =) 0
(modulo n1 n2) =) 0

If n1/n2 is not an integer:
(quotient n1 n2) =) nq
(remainder n1 n2) =) nr
(modulo n1 n2) =) nm

where nq is n1=n2 rounded towards zero, 0 < jnrj < jn2j,
0 < jnmj < jn2j, nr and nm di�er from n1 by a multiple of
n2, nr has the same sign as n1, and nm has the same sign
as n2.
From this we can conclude that for integers n1 and n2 withn2 not equal to 0,

(= n1 (+ (* n2 (quotient n1 n2))
(remainder n1 n2)))

=) #t
provided all numbers involved in that computation are ex-
act.

(modulo 13 4) =) 1
(remainder 13 4) =) 1
(modulo -13 4) =) 3
(remainder -13 4) =) -1
(modulo 13 -4) =) -3
(remainder 13 -4) =) 1
(modulo -13 -4) =) -1
(remainder -13 -4) =) -1
(remainder -13 -4.0) =) -1.0 ; inexact
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(gcd n1 : : : ) library procedure
(lcm n1 : : : ) library procedure
These procedures return the greatest common divisor or
least common multiple of their arguments. The result is
always non-negative.

(gcd 32 -36) =) 4
(gcd) =) 0
(lcm 32 -36) =) 288
(lcm 32.0 -36) =) 288.0 ; inexact
(lcm) =) 1

(numerator q) procedure
(denominator q) procedure
These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is de�ned
to be 1.

(numerator (/ 6 4)) =) 3
(denominator (/ 6 4)) =) 2
(denominator

(exact->inexact (/ 6 4))) =) 2.0

(floor x) procedure
(ceiling x) procedure
(truncate x) procedure
(round x) procedure

These procedures return integers. Floor returns the
largest integer not larger than x. Ceiling returns the
smallest integer not smaller than x. Truncate returns the
integer closest to x whose absolute value is not larger than
the absolute value of x. Round returns the closest inte-
ger to x, rounding to even when x is halfway between two
integers.
Rationale: Round rounds to even for consistency with the de-
fault rounding mode speci�ed by the IEEE 
oating point stan-
dard.
Note: If the argument to one of these procedures is inexact,
then the result will also be inexact. If an exact value is needed,
the result should be passed to the inexact->exact procedure.

(floor -4.3) =) -5.0
(ceiling -4.3) =) -4.0
(truncate -4.3) =) -4.0
(round -4.3) =) -4.0
(floor 3.5) =) 3.0
(ceiling 3.5) =) 4.0
(truncate 3.5) =) 3.0
(round 3.5) =) 4.0 ; inexact
(round 7/2) =) 4 ; exact
(round 7) =) 7

(rationalize x y) library procedure

Rationalize returns the simplest rational number di�er-
ing from x by no more than y. A rational number r1 is
simpler than another rational number r2 if r1 = p1=q1 and
r2 = p2=q2 (in lowest terms) and jp1j � jp2j and jq1j � jq2j.
Thus 3=5 is simpler than 4=7. Although not all rationals
are comparable in this ordering (consider 2=7 and 3=5) any
interval contains a rational number that is simpler than ev-
ery other rational number in that interval (the simpler 2=5
lies between 2=7 and 3=5). Note that 0 = 0=1 is the sim-
plest rational of all.

(rationalize
(inexact->exact .3) 1/10) =) 1/3 ; exact

(rationalize .3 1/10) =) #i1/3 ; inexact

(exp z) procedure
(log z) procedure
(sin z) procedure
(cos z) procedure
(tan z) procedure
(asin z) procedure
(acos z) procedure
(atan z) procedure
(atan y x) procedure
These procedures are part of every implementation that
supports general real numbers; they compute the usual
transcendental functions. Log computes the natural log-
arithm of z (not the base ten logarithm). Asin, acos,
and atan compute arcsine (sin�1), arccosine (cos�1), and
arctangent (tan�1), respectively. The two-argument vari-
ant of atan computes (angle (make-rectangular x y))
(see below), even in implementations that don't support
general complex numbers.
In general, the mathematical functions log, arcsine, arc-
cosine, and arctangent are multiply de�ned. The value of
log z is de�ned to be the one whose imaginary part lies in
the range from �� (exclusive) to � (inclusive). log 0 is un-
de�ned. With log de�ned this way, the values of sin�1 z,
cos�1 z, and tan�1 z are according to the following for-
mul�:

sin�1 z = �i log(iz +p1� z2)
cos�1 z = �=2� sin�1 z

tan�1 z = (log(1 + iz)� log(1� iz))=(2i)

The above speci�cation follows [27], which in turn
cites [19]; refer to these sources for more detailed discussion
of branch cuts, boundary conditions, and implementation
of these functions. When it is possible these procedures
produce a real result from a real argument.
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(sqrt z) procedure
Returns the principal square root of z. The result will have
either positive real part, or zero real part and non-negative
imaginary part.

(expt z1 z2) procedure
Returns z1 raised to the power z2. For z1 6= 0

z1z2 = ez2 log z1
0z is 1 if z = 0 and 0 otherwise.

(make-rectangular x1 x2) procedure
(make-polar x3 x4) procedure
(real-part z) procedure
(imag-part z) procedure
(magnitude z) procedure
(angle z) procedure
These procedures are part of every implementation that
supports general complex numbers. Suppose x1, x2, x3,
and x4 are real numbers and z is a complex number such
that

z = x1 + x2i = x3 � eix4
Then

(make-rectangular x1 x2) =) z
(make-polar x3 x4) =) z
(real-part z) =) x1
(imag-part z) =) x2
(magnitude z) =) jx3j
(angle z) =) xangle

where �� < xangle � � with xangle = x4 + 2�n for some
integer n.
Rationale: Magnitude is the same as abs for a real argu-
ment, but abs must be present in all implementations, whereas
magnitude need only be present in implementations that sup-
port general complex numbers.

(exact->inexact z) procedure
(inexact->exact z) procedure
Exact->inexact returns an inexact representation of z.
The value returned is the inexact number that is numeri-
cally closest to the argument. If an exact argument has no
reasonably close inexact equivalent, then a violation of an
implementation restriction may be reported.
Inexact->exact returns an exact representation of z. The
value returned is the exact number that is numerically clos-
est to the argument. If an inexact argument has no rea-
sonably close exact equivalent, then a violation of an im-
plementation restriction may be reported.
These procedures implement the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range. See section 6.2.3.

6.2.6. Numerical input and output

(number->string z) procedure
(number->string z radix) procedure
Radix must be an exact integer, either 2, 8, 10, or 16. If
omitted, radix defaults to 10. The procedure number->
string takes a number and a radix and returns as a string
an external representation of the given number in the given
radix such that

(let ((number number)
(radix radix))

(eqv? number
(string->number (number->string number

radix)
radix)))

is true. It is an error if no possible result makes this ex-
pression true.
If z is inexact, the radix is 10, and the above expression
can be satis�ed by a result that contains a decimal point,
then the result contains a decimal point and is expressed
using the minimum number of digits (exclusive of exponent
and trailing zeroes) needed to make the above expression
true [3, 5]; otherwise the format of the result is unspeci�ed.
The result returned by number->string never contains an
explicit radix pre�x.
Note: The error case can occur only when z is not a complex
number or is a complex number with a non-rational real or
imaginary part.
Rationale: If z is an inexact number represented using 
onums,
and the radix is 10, then the above expression is normally satis-
�ed by a result containing a decimal point. The unspeci�ed case
allows for in�nities, NaNs, and non-
onum representations.

(string->number string) procedure
(string->number string radix) procedure
Returns a number of the maximally precise representation
expressed by the given string. Radix must be an exact
integer, either 2, 8, 10, or 16. If supplied, radix is a default
radix that may be overridden by an explicit radix pre�x in
string (e.g. "#o177"). If radix is not supplied, then the
default radix is 10. If string is not a syntactically valid
notation for a number, then string->number returns #f.

(string->number "100") =) 100
(string->number "100" 16) =) 256
(string->number "1e2") =) 100.0
(string->number "15##") =) 1500.0

Note: The domain of string->number may be restricted by
implementations in the following ways. String->number is per-
mitted to return #f whenever string contains an explicit radix
pre�x. If all numbers supported by an implementation are real,
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then string->number is permitted to return #f whenever string
uses the polar or rectangular notations for complex numbers. If
all numbers are integers, then string->number may return #f
whenever the fractional notation is used. If all numbers are
exact, then string->number may return #f whenever an ex-
ponent marker or explicit exactness pre�x is used, or if a #
appears in place of a digit. If all inexact numbers are integers,
then string->number may return #f whenever a decimal point
is used.

6.3. Other data types

This section describes operations on some of Scheme's non-
numeric data types: booleans, pairs, lists, symbols, char-
acters, strings and vectors.

6.3.1. Booleans
The standard boolean objects for true and false are written
as #t and #f. What really matters, though, are the objects
that the Scheme conditional expressions (if, cond, and,
or, do) treat as true or false. The phrase \a true value"
(or sometimes just \true") means any object treated as
true by the conditional expressions, and the phrase \a false
value" (or \false") means any object treated as false by the
conditional expressions.
Of all the standard Scheme values, only #f counts as false
in conditional expressions. Except for #f, all standard
Scheme values, including #t, pairs, the empty list, sym-
bols, numbers, strings, vectors, and procedures, count as
true.
Note: Programmers accustomed to other dialects of Lisp
should be aware that Scheme distinguishes both #f and the
empty list from the symbol nil.
Boolean constants evaluate to themselves, so they do not
need to be quoted in programs.

#t =) #t
#f =) #f
'#f =) #f

(not obj) library procedure
Not returns #t if obj is false, and returns #f otherwise.

(not #t) =) #f
(not 3) =) #f
(not (list 3)) =) #f
(not #f) =) #t
(not '()) =) #f
(not (list)) =) #f
(not 'nil) =) #f

(boolean? obj) library procedure
Boolean? returns #t if obj is either #t or #f and returns
#f otherwise.

(boolean? #f) =) #t
(boolean? 0) =) #f
(boolean? '()) =) #f

6.3.2. Pairs and lists
A pair (sometimes called a dotted pair) is a record structure
with two �elds called the car and cdr �elds (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr �elds are accessed by the procedures car and
cdr. The car and cdr �elds are assigned by the procedures
set-car! and set-cdr!.
Pairs are used primarily to represent lists. A list can be
de�ned recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is de�ned as
the smallest set X such that

� The empty list is in X .
� If list is in X , then any pair whose cdr �eld contains
list is also in X .

The objects in the car �elds of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the �rst element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.
The empty list is a special object of its own type (it is not
a pair); it has no elements and its length is zero.
Note: The above de�nitions imply that all lists have �nite
length and are terminated by the empty list.
The most general notation (external representation) for
Scheme pairs is the \dotted" notation (c1 . c2) where c1
is the value of the car �eld and c2 is the value of the cdr
�eld. For example (4 . 5) is a pair whose car is 4 and
whose cdr is 5. Note that (4 . 5) is the external repre-
sentation of a pair, not an expression that evaluates to a
pair.
A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written () . For
example,

(a b c d e)
and

(a . (b . (c . (d . (e . ())))))
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are equivalent notations for a list of symbols.
A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(a b c . d)
is equivalent to

(a . (b . (c . d)))
Whether a given pair is a list depends upon what is stored
in the cdr �eld. When the set-cdr! procedure is used, an
object can be a list one moment and not the next:

(define x (list 'a 'b 'c))
(define y x)
y =) (a b c)
(list? y) =) #t
(set-cdr! x 4) =) unspeci�ed
x =) (a . 4)
(eqv? x y) =) #t
y =) (a . 4)
(list? y) =) #f
(set-cdr! x x) =) unspeci�ed
(list? x) =) #f

Within literal expressions and representations of ob-
jects read by the read procedure, the forms 'hdatumi,
�hdatumi, ,hdatumi, and ,@hdatumi denote two-ele-
ment lists whose �rst elements are the symbols quote,
quasiquote, unquote, and unquote-splicing, respec-
tively. The second element in each case is hdatumi. This
convention is supported so that arbitrary Scheme pro-
grams may be represented as lists. That is, according
to Scheme's grammar, every hexpressioni is also a hdatumi
(see section 7.1.2). Among other things, this permits the
use of the read procedure to parse Scheme programs. See
section 3.3.

(pair? obj) procedure
Pair? returns #t if obj is a pair, and otherwise returns #f.

(pair? '(a . b)) =) #t
(pair? '(a b c)) =) #t
(pair? '()) =) #f
(pair? '#(a b)) =) #f

(cons obj1 obj2) procedure
Returns a newly allocated pair whose car is obj1 and whose
cdr is obj2. The pair is guaranteed to be di�erent (in the
sense of eqv?) from every existing object.

(cons 'a '()) =) (a)
(cons '(a) '(b c d)) =) ((a) b c d)
(cons "a" '(b c)) =) ("a" b c)
(cons 'a 3) =) (a . 3)
(cons '(a b) 'c) =) ((a b) . c)

(car pair) procedure
Returns the contents of the car �eld of pair . Note that it
is an error to take the car of the empty list.

(car '(a b c)) =) a
(car '((a) b c d)) =) (a)
(car '(1 . 2)) =) 1
(car '()) =) error

(cdr pair) procedure
Returns the contents of the cdr �eld of pair . Note that it
is an error to take the cdr of the empty list.

(cdr '((a) b c d)) =) (b c d)
(cdr '(1 . 2)) =) 2
(cdr '()) =) error

(set-car! pair obj) procedure
Stores obj in the car �eld of pair . The value returned by
set-car! is unspeci�ed.

(define (f) (list 'not-a-constant-list))
(define (g) '(constant-list))
(set-car! (f) 3) =) unspeci�ed
(set-car! (g) 3) =) error

(set-cdr! pair obj) procedure
Stores obj in the cdr �eld of pair . The value returned by
set-cdr! is unspeci�ed.

(caar pair) library procedure
(cadr pair) library procedure

... ...
(cdddar pair) library procedure
(cddddr pair) library procedure
These procedures are compositions of car and cdr, where
for example caddr could be de�ned by

(define caddr (lambda (x) (car (cdr (cdr x))))).
Arbitrary compositions, up to four deep, are provided.
There are twenty-eight of these procedures in all.

(null? obj) library procedure
Returns #t if obj is the empty list, otherwise returns #f.

(list? obj) library procedure
Returns #t if obj is a list, otherwise returns #f. By de�ni-
tion, all lists have �nite length and are terminated by the
empty list.
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(list? '(a b c)) =) #t
(list? '()) =) #t
(list? '(a . b)) =) #f
(let ((x (list 'a)))
(set-cdr! x x)
(list? x)) =) #f

(list obj : : : ) library procedure
Returns a newly allocated list of its arguments.

(list 'a (+ 3 4) 'c) =) (a 7 c)
(list) =) ()

(length list) library procedure
Returns the length of list .

(length '(a b c)) =) 3
(length '(a (b) (c d e))) =) 3
(length '()) =) 0

(append list : : : ) library procedure
Returns a list consisting of the elements of the �rst list
followed by the elements of the other lists.

(append '(x) '(y)) =) (x y)
(append '(a) '(b c d)) =) (a b c d)
(append '(a (b)) '((c))) =) (a (b) (c))

The resulting list is always newly allocated, except that
it shares structure with the last list argument. The last
argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append '(a b) '(c . d)) =) (a b c . d)
(append '() 'a) =) a

(reverse list) library procedure
Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse '(a b c)) =) (c b a)
(reverse '(a (b c) d (e (f))))

=) ((e (f)) d (b c) a)

(list-tail list k) library procedure
Returns the sublist of list obtained by omitting the �rst k
elements. It is an error if list has fewer than k elements.
List-tail could be de�ned by

(define list-tail
(lambda (x k)
(if (zero? k)

x
(list-tail (cdr x) (- k 1)))))

(list-ref list k) library procedure
Returns the kth element of list . (This is the same as the
car of (list-tail list k).) It is an error if list has fewer
than k elements.

(list-ref '(a b c d) 2) =) c
(list-ref '(a b c d)

(inexact->exact (round 1.8)))
=) c

(memq obj list) library procedure
(memv obj list) library procedure
(member obj list) library procedure
These procedures return the �rst sublist of list whose car
is obj , where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length
of list . If obj does not occur in list , then #f (not the empty
list) is returned. Memq uses eq? to compare obj with the
elements of list , while memv uses eqv? and member uses
equal?.

(memq 'a '(a b c)) =) (a b c)
(memq 'b '(a b c)) =) (b c)
(memq 'a '(b c d)) =) #f
(memq (list 'a) '(b (a) c)) =) #f
(member (list 'a)

'(b (a) c)) =) ((a) c)
(memq 101 '(100 101 102)) =) unspeci�ed
(memv 101 '(100 101 102)) =) (101 102)

(assq obj alist) library procedure
(assv obj alist) library procedure
(assoc obj alist) library procedure
Alist (for \association list") must be a list of pairs. These
procedures �nd the �rst pair in alist whose car �eld is obj ,
and returns that pair. If no pair in alist has obj as its car,
then #f (not the empty list) is returned. Assq uses eq? to
compare obj with the car �elds of the pairs in alist , while
assv uses eqv? and assoc uses equal?.

(define e '((a 1) (b 2) (c 3)))
(assq 'a e) =) (a 1)
(assq 'b e) =) (b 2)
(assq 'd e) =) #f
(assq (list 'a) '(((a)) ((b)) ((c))))

=) #f
(assoc (list 'a) '(((a)) ((b)) ((c))))

=) ((a))
(assq 5 '((2 3) (5 7) (11 13)))

=) unspeci�ed
(assv 5 '((2 3) (5 7) (11 13)))

=) (5 7)
Rationale: Although they are ordinarily used as predicates,
memq, memv, member, assq, assv, and assoc do not have question
marks in their names because they return useful values rather
than just #t or #f.
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6.3.3. Symbols
Symbols are objects whose usefulness rests on the fact that
two symbols are identical (in the sense of eqv?) if and only
if their names are spelled the same way. This is exactly the
property needed to represent identi�ers in programs, and
so most implementations of Scheme use them internally for
that purpose. Symbols are useful for many other applica-
tions; for instance, they may be used the way enumerated
values are used in Pascal.
The rules for writing a symbol are exactly the same as the
rules for writing an identi�er; see sections 2.1 and 7.1.1.
It is guaranteed that any symbol that has been returned as
part of a literal expression, or read using the read proce-
dure, and subsequently written out using the write proce-
dure, will read back in as the identical symbol (in the sense
of eqv?). The string->symbol procedure, however, can
create symbols for which this write/read invariance may
not hold because their names contain special characters or
letters in the non-standard case.
Note: Some implementations of Scheme have a feature known
as \slashi�cation" in order to guarantee write/read invariance
for all symbols, but historically the most important use of this
feature has been to compensate for the lack of a string data
type.
Some implementations also have \uninterned symbols", which
defeat write/read invariance even in implementations with
slashi�cation, and also generate exceptions to the rule that two
symbols are the same if and only if their names are spelled the
same.

(symbol? obj) procedure
Returns #t if obj is a symbol, otherwise returns #f.

(symbol? 'foo) =) #t
(symbol? (car '(a b))) =) #t
(symbol? "bar") =) #f
(symbol? 'nil) =) #t
(symbol? '()) =) #f
(symbol? #f) =) #f

(symbol->string symbol) procedure
Returns the name of symbol as a string. If the symbol was
part of an object returned as the value of a literal expres-
sion (section 4.1.2) or by a call to the read procedure, and
its name contains alphabetic characters, then the string
returned will contain characters in the implementation's
preferred standard case|some implementations will prefer
upper case, others lower case. If the symbol was returned
by string->symbol, the case of characters in the string
returned will be the same as the case in the string that
was passed to string->symbol. It is an error to apply
mutation procedures like string-set! to strings returned
by this procedure.

The following examples assume that the implementation's
standard case is lower case:

(symbol->string 'flying-fish)
=) "flying-fish"

(symbol->string 'Martin) =) "martin"
(symbol->string

(string->symbol "Malvina"))
=) "Malvina"

(string->symbol string) procedure
Returns the symbol whose name is string . This procedure
can create symbols with names containing special charac-
ters or letters in the non-standard case, but it is usually
a bad idea to create such symbols because in some imple-
mentations of Scheme they cannot be read as themselves.
See symbol->string.
The following examples assume that the implementation's
standard case is lower case:

(eq? 'mISSISSIppi 'mississippi)
=) #t

(string->symbol "mISSISSIppi")
=) the symbol with name "mISSISSIppi"

(eq? 'bitBlt (string->symbol "bitBlt"))
=) #f

(eq? 'JollyWog
(string->symbol
(symbol->string 'JollyWog)))

=) #t
(string=? "K. Harper, M.D."

(symbol->string
(string->symbol "K. Harper, M.D.")))

=) #t

6.3.4. Characters
Characters are objects that represent printed characters
such as letters and digits. Characters are written using the
notation #\hcharacteri or #\hcharacter namei. For exam-
ple:

#\a ; lower case letter
#\A ; upper case letter
#\( ; left parenthesis
#\ ; the space character
#\space ; the preferred way to write a space
#\newline ; the newline character

Case is signi�cant in #\hcharacteri, but not in #\hcharacter
namei. If hcharacteri in #\hcharacteri is alphabetic, then
the character following hcharacteri must be a delimiter
character such as a space or parenthesis. This rule resolves
the ambiguous case where, for example, the sequence of
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characters \#\space" could be taken to be either a repre-
sentation of the space character or a representation of the
character \#\s" followed by a representation of the symbol
\pace."
Characters written in the #\ notation are self-evaluating.
That is, they do not have to be quoted in programs.
Some of the procedures that operate on characters ignore
the di�erence between upper case and lower case. The pro-
cedures that ignore case have \-ci" (for \case insensitive")
embedded in their names.

(char? obj) procedure
Returns #t if obj is a character, otherwise returns #f.

(char=? char1 char2) procedure
(char<? char1 char2) procedure
(char>? char1 char2) procedure
(char<=? char1 char2) procedure
(char>=? char1 char2) procedure
These procedures impose a total ordering on the set of
characters. It is guaranteed that under this ordering:

� The upper case characters are in order. For example,
(char<? #\A #\B) returns #t.

� The lower case characters are in order. For example,
(char<? #\a #\b) returns #t.

� The digits are in order. For example, (char<? #\0
#\9) returns #t.

� Either all the digits precede all the upper case letters,
or vice versa.

� Either all the digits precede all the lower case letters,
or vice versa.

Some implementations may generalize these procedures to
take more than two arguments, as with the corresponding
numerical predicates.

(char-ci=? char1 char2) library procedure
(char-ci<? char1 char2) library procedure
(char-ci>? char1 char2) library procedure
(char-ci<=? char1 char2) library procedure
(char-ci>=? char1 char2) library procedure
These procedures are similar to char=? et cetera, but they
treat upper case and lower case letters as the same. For
example, (char-ci=? #\A #\a) returns #t. Some imple-
mentations may generalize these procedures to take more
than two arguments, as with the corresponding numerical
predicates.

(char-alphabetic? char) library procedure
(char-numeric? char) library procedure
(char-whitespace? char) library procedure
(char-upper-case? letter) library procedure
(char-lower-case? letter) library procedure
These procedures return #t if their arguments are alpha-
betic, numeric, whitespace, upper case, or lower case char-
acters, respectively, otherwise they return #f. The follow-
ing remarks, which are speci�c to the ASCII character set,
are intended only as a guide: The alphabetic characters are
the 52 upper and lower case letters. The numeric charac-
ters are the ten decimal digits. The whitespace characters
are space, tab, line feed, form feed, and carriage return.

(char->integer char) procedure
(integer->char n) procedure
Given a character, char->integer returns an exact inte-
ger representation of the character. Given an exact inte-
ger that is the image of a character under char->integer,
integer->char returns that character. These procedures
implement order-preserving isomorphisms between the set
of characters under the char<=? ordering and some subset
of the integers under the <= ordering. That is, if

(char<=? a b) =) #t and (<= x y) =) #t
and x and y are in the domain of integer->char, then

(<= (char->integer a)
(char->integer b)) =) #t

(char<=? (integer->char x)
(integer->char y)) =) #t

(char-upcase char) library procedure
(char-downcase char) library procedure
These procedures return a character char2 such that
(char-ci=? char char2). In addition, if char is alpha-
betic, then the result of char-upcase is upper case and
the result of char-downcase is lower case.

6.3.5. Strings
Strings are sequences of characters. Strings are written
as sequences of characters enclosed within doublequotes
("). A doublequote can be written inside a string only by
escaping it with a backslash (\), as in

"The word \"recursion\" has many meanings."
A backslash can be written inside a string only by escaping
it with another backslash. Scheme does not specify the
e�ect of a backslash within a string that is not followed by
a doublequote or backslash.
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A string constant may continue from one line to the next,
but the exact contents of such a string are unspeci�ed.
The length of a string is the number of characters that it
contains. This number is an exact, non-negative integer
that is �xed when the string is created. The valid indexes
of a string are the exact non-negative integers less than
the length of the string. The �rst character of a string has
index 0, the second has index 1, and so on.
In phrases such as \the characters of string beginning with
index start and ending with index end ," it is understood
that the index start is inclusive and the index end is ex-
clusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the
length of string , then the entire string is referred to.
Some of the procedures that operate on strings ignore the
di�erence between upper and lower case. The versions that
ignore case have \-ci" (for \case insensitive") embedded
in their names.

(string? obj) procedure
Returns #t if obj is a string, otherwise returns #f.

(make-string k) procedure
(make-string k char) procedure
Make-string returns a newly allocated string of length k.
If char is given, then all elements of the string are ini-
tialized to char , otherwise the contents of the string are
unspeci�ed.

(string char : : : ) library procedure
Returns a newly allocated string composed of the argu-
ments.

(string-length string) procedure
Returns the number of characters in the given string .

(string-ref string k) procedure
k must be a valid index of string . String-ref returns
character k of string using zero-origin indexing.

(string-set! string k char) procedure
k must be a valid index of string . String-set! stores char
in element k of string and returns an unspeci�ed value.

(define (f) (make-string 3 #\*))
(define (g) "***")
(string-set! (f) 0 #\?) =) unspeci�ed
(string-set! (g) 0 #\?) =) error
(string-set! (symbol->string 'immutable)

0
#\?) =) error

(string=? string1 string2) library procedure
(string-ci=? string1 string2) library procedure
Returns #t if the two strings are the same length and con-
tain the same characters in the same positions, otherwise
returns #f. String-ci=? treats upper and lower case let-
ters as though they were the same character, but string=?
treats upper and lower case as distinct characters.

(string<? string1 string2) library procedure
(string>? string1 string2) library procedure
(string<=? string1 string2) library procedure
(string>=? string1 string2) library procedure
(string-ci<? string1 string2) library procedure
(string-ci>? string1 string2) library procedure
(string-ci<=? string1 string2) library procedure
(string-ci>=? string1 string2) library procedure
These procedures are the lexicographic extensions to
strings of the corresponding orderings on characters. For
example, string<? is the lexicographic ordering on strings
induced by the ordering char<? on characters. If two
strings di�er in length but are the same up to the length
of the shorter string, the shorter string is considered to be
lexicographically less than the longer string.
Implementations may generalize these and the string=?
and string-ci=? procedures to take more than two argu-
ments, as with the corresponding numerical predicates.

(substring string start end) library procedure
String must be a string, and start and end must be exact
integers satisfying

0 � start � end � (string-length string).
Substring returns a newly allocated string formed from
the characters of string beginning with index start (inclu-
sive) and ending with index end (exclusive).

(string-append string : : : ) library procedure
Returns a newly allocated string whose characters form the
concatenation of the given strings.

(string->list string) library procedure
(list->string list) library procedure
String->list returns a newly allocated list of the charac-
ters that make up the given string. List->string returns
a newly allocated string formed from the characters in the
list list , which must be a list of characters. String->list
and list->string are inverses so far as equal? is con-
cerned.

(string-copy string) library procedure
Returns a newly allocated copy of the given string .



6. Standard procedures 31

(string-fill! string char) library procedure
Stores char in every element of the given string and returns
an unspeci�ed value.

6.3.6. Vectors
Vectors are heterogenous structures whose elements are in-
dexed by integers. A vector typically occupies less space
than a list of the same length, and the average time re-
quired to access a randomly chosen element is typically
less for the vector than for the list.
The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
�xed when the vector is created. The valid indexes of a
vector are the exact non-negative integers less than the
length of the vector. The �rst element in a vector is indexed
by zero, and the last element is indexed by one less than
the length of the vector.
Vectors are written using the notation #(obj : : : ). For
example, a vector of length 3 containing the number zero
in element 0, the list (2 2 2 2) in element 1, and the
string "Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")
Note that this is the external representation of a vector, not
an expression evaluating to a vector. Like list constants,
vector constants must be quoted:

'#(0 (2 2 2 2) "Anna")
=) #(0 (2 2 2 2) "Anna")

(vector? obj) procedure
Returns #t if obj is a vector, otherwise returns #f.

(make-vector k) procedure
(make-vector k �ll) procedure
Returns a newly allocated vector of k elements. If a second
argument is given, then each element is initialized to �ll .
Otherwise the initial contents of each element is unspeci-
�ed.

(vector obj : : : ) library procedure
Returns a newly allocated vector whose elements contain
the given arguments. Analogous to list.

(vector 'a 'b 'c) =) #(a b c)

(vector-length vector) procedure
Returns the number of elements in vector as an exact in-
teger.

(vector-ref vector k) procedure
k must be a valid index of vector . Vector-ref returns the
contents of element k of vector .

(vector-ref '#(1 1 2 3 5 8 13 21)
5)

=) 8
(vector-ref '#(1 1 2 3 5 8 13 21)

(let ((i (round (* 2 (acos -1)))))
(if (inexact? i)

(inexact->exact i)
i)))

=) 13

(vector-set! vector k obj) procedure
k must be a valid index of vector . Vector-set! stores obj
in element k of vector . The value returned by vector-set!
is unspeci�ed.

(let ((vec (vector 0 '(2 2 2 2) "Anna")))
(vector-set! vec 1 '("Sue" "Sue"))
vec)

=) #(0 ("Sue" "Sue") "Anna")
(vector-set! '#(0 1 2) 1 "doe")

=) error ; constant vector

(vector->list vector) library procedure
(list->vector list) library procedure
Vector->list returns a newly allocated list of the objects
contained in the elements of vector . List->vector returns
a newly created vector initialized to the elements of the list
list .

(vector->list '#(dah dah didah))
=) (dah dah didah)

(list->vector '(dididit dah))
=) #(dididit dah)

(vector-fill! vector �ll) library procedure
Stores �ll in every element of vector . The value returned
by vector-fill! is unspeci�ed.

6.4. Control features
This chapter describes various primitive procedures which
control the 
ow of program execution in special ways. The
procedure? predicate is also described here.

(procedure? obj) procedure
Returns #t if obj is a procedure, otherwise returns #f.

(procedure? car) =) #t
(procedure? 'car) =) #f
(procedure? (lambda (x) (* x x)))

=) #t
(procedure? '(lambda (x) (* x x)))

=) #f
(call-with-current-continuation procedure?)

=) #t
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(apply proc arg1 : : : args) procedure
Proc must be a procedure and args must be a list. Calls
proc with the elements of the list (append (list arg1
: : : ) args) as the actual arguments.

(apply + (list 3 4)) =) 7
(define compose

(lambda (f g)
(lambda args

(f (apply g args)))))
((compose sqrt *) 12 75) =) 30

(map proc list1 list2 : : : ) library procedure
The lists must be lists, and proc must be a procedure taking
as many arguments as there are lists and returning a single
value. If more than one list is given, then they must all
be the same length. Map applies proc element-wise to the
elements of the lists and returns a list of the results, in
order. The dynamic order in which proc is applied to the
elements of the lists is unspeci�ed.

(map cadr '((a b) (d e) (g h)))
=) (b e h)

(map (lambda (n) (expt n n))
'(1 2 3 4 5))

=) (1 4 27 256 3125)
(map + '(1 2 3) '(4 5 6)) =) (5 7 9)
(let ((count 0))

(map (lambda (ignored)
(set! count (+ count 1))
count)

'(a b))) =) (1 2) or (2 1)

(for-each proc list1 list2 : : : ) library procedure
The arguments to for-each are like the arguments to map,
but for-each calls proc for its side e�ects rather than for
its values. Unlike map, for-each is guaranteed to call proc
on the elements of the lists in order from the �rst ele-
ment(s) to the last, and the value returned by for-each is
unspeci�ed.

(let ((v (make-vector 5)))
(for-each (lambda (i)

(vector-set! v i (* i i)))
'(0 1 2 3 4))

v) =) #(0 1 4 9 16)

(force promise) library procedure
Forces the value of promise (see delay, section 4.2.5). If no
value has been computed for the promise, then a value is

computed and returned. The value of the promise is cached
(or \memoized") so that if it is forced a second time, the
previously computed value is returned.

(force (delay (+ 1 2))) =) 3
(let ((p (delay (+ 1 2))))

(list (force p) (force p)))
=) (3 3)

(define a-stream
(letrec ((next

(lambda (n)
(cons n (delay (next (+ n 1)))))))

(next 0)))
(define head car)
(define tail

(lambda (stream) (force (cdr stream))))
(head (tail (tail a-stream)))

=) 2
Force and delay are mainly intended for programs written
in functional style. The following examples should not be
considered to illustrate good programming style, but they
illustrate the property that only one value is computed for
a promise, no matter how many times it is forced.

(define count 0)
(define p

(delay (begin (set! count (+ count 1))
(if (> count x)

count
(force p)))))

(define x 5)
p =) a promise
(force p) =) 6
p =) a promise, still
(begin (set! x 10)

(force p)) =) 6
Here is a possible implementation of delay and force.
Promises are implemented here as procedures of no argu-
ments, and force simply calls its argument:

(define force
(lambda (object)
(object)))

We de�ne the expression
(delay hexpressioni)

to have the same meaning as the procedure call
(make-promise (lambda () hexpressioni))

as follows
(define-syntax delay

(syntax-rules ()
((delay expression)
(make-promise (lambda () expression))))),
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where make-promise is de�ned as follows:
(define make-promise

(lambda (proc)
(let ((result-ready? #f)

(result #f))
(lambda ()

(if result-ready?
result
(let ((x (proc)))
(if result-ready?

result
(begin (set! result-ready? #t)

(set! result x)
result))))))))

Rationale: A promise may refer to its own value, as in the
last example above. Forcing such a promise may cause the
promise to be forced a second time before the value of the �rst
force has been computed. This complicates the de�nition of
make-promise.
Various extensions to this semantics of delay and force
are supported in some implementations:

� Calling force on an object that is not a promise may
simply return the object.

� It may be the case that there is no means by which
a promise can be operationally distinguished from its
forced value. That is, expressions like the following
may evaluate to either #t or to #f, depending on the
implementation:

(eqv? (delay 1) 1) =) unspeci�ed
(pair? (delay (cons 1 2))) =) unspeci�ed

� Some implementations may implement \implicit forc-
ing," where the value of a promise is forced by primi-
tive procedures like cdr and +:

(+ (delay (* 3 7)) 13) =) 34

(call-with-current-continuation proc) procedure
Proc must be a procedure of one argument. The procedure
call-with-current-continuation packages up the cur-
rent continuation (see the rationale below) as an \escape
procedure" and passes it as an argument to proc. The es-
cape procedure is a Scheme procedure that, if it is later
called, will abandon whatever continuation is in e�ect at
that later time and will instead use the continuation that
was in e�ect when the escape procedure was created. Call-
ing the escape procedure may cause the invocation of before
and after thunks installed using dynamic-wind.
The escape procedure accepts the same number of ar-
guments as the continuation to the original call to

call-with-current-continuation. Except for continua-
tions created by the call-with-values procedure, all con-
tinuations take exactly one value. The e�ect of passing no
value or more than one value to continuations that were
not created by call-with-values is unspeci�ed.
The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It may be
stored in variables or data structures and may be called as
many times as desired.
The following examples show only the most common ways
in which call-with-current-continuation is used. If
all real uses were as simple as these examples, there
would be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation
(lambda (exit)
(for-each (lambda (x)

(if (negative? x)
(exit x)))

'(54 0 37 -3 245 19))
#t)) =) -3

(define list-length
(lambda (obj)
(call-with-current-continuation

(lambda (return)
(letrec ((r

(lambda (obj)
(cond ((null? obj) 0)

((pair? obj)
(+ (r (cdr obj)) 1))
(else (return #f))))))

(r obj))))))
(list-length '(1 2 3 4)) =) 4
(list-length '(a b . c)) =) #f

Rationale:
A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bodies, but
in fact call-with-current-continuation is extremely useful
for implementing a wide variety of advanced control structures.
Whenever a Scheme expression is evaluated there is a contin-
uation wanting the result of the expression. The continuation
represents an entire (default) future for the computation. If the
expression is evaluated at top level, for example, then the con-
tinuation might take the result, print it on the screen, prompt
for the next input, evaluate it, and so on forever. Most of the
time the continuation includes actions speci�ed by user code,
as in a continuation that will take the result, multiply it by the
value stored in a local variable, add seven, and give the answer
to the top level continuation to be printed. Normally these
ubiquitous continuations are hidden behind the scenes and pro-
grammers do not think much about them. On rare occasions,
however, a programmer may need to deal with continuations ex-
plicitly. Call-with-current-continuation allows Scheme pro-
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grammers to do that by creating a procedure that acts just like
the current continuation.
Most programming languages incorporate one or more special-
purpose escape constructs with names like exit, return, or
even goto. In 1965, however, Peter Landin [16] invented a
general purpose escape operator called the J-operator. John
Reynolds [24] described a simpler but equally powerful con-
struct in 1972. The catch special form described by Sussman
and Steele in the 1975 report on Scheme is exactly the same as
Reynolds's construct, though its name came from a less general
construct in MacLisp. Several Scheme implementors noticed
that the full power of the catch construct could be provided by
a procedure instead of by a special syntactic construct, and the
name call-with-current-continuation was coined in 1982.
This name is descriptive, but opinions di�er on the merits of
such a long name, and some people use the name call/cc in-
stead.

(values obj : : :) procedure
Delivers all of its arguments to its continuation. Except
for continuations created by the call-with-values pro-
cedure, all continuations take exactly one value. Values
might be de�ned as follows:

(define (values . things)
(call-with-current-continuation
(lambda (cont) (apply cont things))))

(call-with-values producer consumer) procedure
Calls its producer argument with no values and a contin-
uation that, when passed some values, calls the consumer
procedure with those values as arguments. The continua-
tion for the call to consumer is the continuation of the call
to call-with-values.

(call-with-values (lambda () (values 4 5))
(lambda (a b) b))

=) 5
(call-with-values * -) =) -1

(dynamic-wind before thunk after) procedure
Calls thunk without arguments, returning the result(s) of
this call. Before and after are called, also without ar-
guments, as required by the following rules (note that
in the absence of calls to continuations captured using
call-with-current-continuation the three arguments
are called once each, in order). Before is called whenever
execution enters the dynamic extent of the call to thunk
and after is called whenever it exits that dynamic extent.
The dynamic extent of a procedure call is the period be-
tween when the call is initiated and when it returns. In

Scheme, because of call-with-current-continuation,
the dynamic extent of a call may not be a single, connected
time period. It is de�ned as follows:

� The dynamic extent is entered when execution of the
body of the called procedure begins.

� The dynamic extent is also entered when exe-
cution is not within the dynamic extent and a
continuation is invoked that was captured (using
call-with-current-continuation) during the dy-
namic extent.

� It is exited when the called procedure returns.
� It is also exited when execution is within the dynamic
extent and a continuation is invoked that was captured
while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic
extent of the call to thunk and then a continuation is in-
voked in such a way that the afters from these two invoca-
tions of dynamic-wind are both to be called, then the after
associated with the second (inner) call to dynamic-wind is
called �rst.
If a second call to dynamic-wind occurs within the dy-
namic extent of the call to thunk and then a continua-
tion is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called,
then the before associated with the �rst (outer) call to
dynamic-wind is called �rst.
If invoking a continuation requires calling the before from
one call to dynamic-wind and the after from another, then
the after is called �rst.
The e�ect of using a captured continuation to enter or exit
the dynamic extent of a call to before or after is unde�ned.

(let ((path '())
(c #f))

(let ((add (lambda (s)
(set! path (cons s path)))))

(dynamic-wind
(lambda () (add 'connect))
(lambda ()

(add (call-with-current-continuation
(lambda (c0)
(set! c c0)
'talk1))))

(lambda () (add 'disconnect)))
(if (< (length path) 4)

(c 'talk2)
(reverse path))))
=) (connect talk1 disconnect

connect talk2 disconnect)
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6.5. Eval

(eval expression environment-speci�er) procedure
Evaluates expression in the speci�ed environment and re-
turns its value. Expression must be a valid Scheme expres-
sion represented as data, and environment-speci�er must
be a value returned by one of the three procedures de-
scribed below. Implementations may extend eval to allow
non-expression programs (de�nitions) as the �rst argument
and to allow other values as environments, with the re-
striction that eval is not allowed to create new bindings
in the environments associated with null-environment or
scheme-report-environment.

(eval '(* 7 3) (scheme-report-environment 5))
=) 21

(let ((f (eval '(lambda (f x) (f x x))
(null-environment 5))))

(f + 10))
=) 20

(scheme-report-environment version) procedure
(null-environment version) procedure
Version must be the exact integer 5, corresponding to this
revision of the Scheme report (the Revised5 Report on
Scheme). Scheme-report-environment returns a speci�er
for an environment that is empty except for all bindings de-
�ned in this report that are either required or both optional
and supported by the implementation. Null-environment
returns a speci�er for an environment that is empty except
for the (syntactic) bindings for all syntactic keywords de-
�ned in this report that are either required or both optional
and supported by the implementation.
Other values of version can be used to specify environments
matching past revisions of this report, but their support is
not required. An implementation will signal an error if
version is neither 5 nor another value supported by the
implementation.
The e�ect of assigning (through the use of eval) a vari-
able bound in a scheme-report-environment (for exam-
ple car) is unspeci�ed. Thus the environments speci�ed
by scheme-report-environment may be immutable.

(interaction-environment) optional procedure
This procedure returns a speci�er for the environment that
contains implementation-de�ned bindings, typically a su-
perset of those listed in the report. The intent is that this
procedure will return the environment in which the imple-
mentation would evaluate expressions dynamically typed
by the user.

6.6. Input and output

6.6.1. Ports
Ports represent input and output devices. To Scheme, an
input port is a Scheme object that can deliver characters
upon command, while an output port is a Scheme object
that can accept characters.

(call-with-input-file string proc) library procedure
(call-with-output-file string proc) library procedure
String should be a string naming a �le, and proc
should be a procedure that accepts one argument. For
call-with-input-file, the �le should already exist; for
call-with-output-file, the e�ect is unspeci�ed if the
�le already exists. These procedures call proc with one ar-
gument: the port obtained by opening the named �le for
input or output. If the �le cannot be opened, an error is
signalled. If proc returns, then the port is closed automati-
cally and the value(s) yielded by the proc is(are) returned.
If proc does not return, then the port will not be closed
automatically unless it is possible to prove that the port
will never again be used for a read or write operation.
Rationale: Because Scheme's escape procedures have un-
limited extent, it is possible to escape from the current con-
tinuation but later to escape back in. If implementations
were permitted to close the port on any escape from the
current continuation, then it would be impossible to write
portable code using both call-with-current-continuation
and call-with-input-file or call-with-output-file.

(input-port? obj) procedure
(output-port? obj) procedure
Returns #t if obj is an input port or output port respec-
tively, otherwise returns #f.

(current-input-port) procedure
(current-output-port) procedure
Returns the current default input or output port.

(with-input-from-file string thunk)
optional procedure

(with-output-to-file string thunk)
optional procedure

String should be a string naming a �le, and proc should be
a procedure of no arguments. For with-input-from-file,
the �le should already exist; for with-output-to-file,
the e�ect is unspeci�ed if the �le already exists. The
�le is opened for input or output, an input or output
port connected to it is made the default value returned
by current-input-port or current-output-port (and is
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used by (read), (write obj), and so forth), and the thunk
is called with no arguments. When the thunk returns,
the port is closed and the previous default is restored.
With-input-from-file and with-output-to-file re-
turn(s) the value(s) yielded by thunk . If an escape pro-
cedure is used to escape from the continuation of these
procedures, their behavior is implementation dependent.

(open-input-file �lename) procedure
Takes a string naming an existing �le and returns an input
port capable of delivering characters from the �le. If the
�le cannot be opened, an error is signalled.

(open-output-file �lename) procedure
Takes a string naming an output �le to be created and
returns an output port capable of writing characters to a
new �le by that name. If the �le cannot be opened, an
error is signalled. If a �le with the given name already
exists, the e�ect is unspeci�ed.

(close-input-port port) procedure
(close-output-port port) procedure
Closes the �le associated with port , rendering the port in-
capable of delivering or accepting characters. These rou-
tines have no e�ect if the �le has already been closed. The
value returned is unspeci�ed.

6.6.2. Input

(read) library procedure
(read port) library procedure
Read converts external representations of Scheme objects
into the objects themselves. That is, it is a parser for the
nonterminal hdatumi (see sections 7.1.2 and 6.3.2). Read
returns the next object parsable from the given input port ,
updating port to point to the �rst character past the end
of the external representation of the object.
If an end of �le is encountered in the input before any char-
acters are found that can begin an object, then an end of
�le object is returned. The port remains open, and fur-
ther attempts to read will also return an end of �le object.
If an end of �le is encountered after the beginning of an
object's external representation, but the external represen-
tation is incomplete and therefore not parsable, an error is
signalled.
The port argument may be omitted, in which case it de-
faults to the value returned by current-input-port. It is
an error to read from a closed port.

(read-char) procedure
(read-char port) procedure
Returns the next character available from the input port ,
updating the port to point to the following character. If
no more characters are available, an end of �le object is
returned. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

(peek-char) procedure
(peek-char port) procedure
Returns the next character available from the input port ,
without updating the port to point to the following char-
acter. If no more characters are available, an end of �le
object is returned. Port may be omitted, in which case it
defaults to the value returned by current-input-port.
Note: The value returned by a call to peek-char is the same as
the value that would have been returned by a call to read-char
with the same port . The only di�erence is that the very next call
to read-char or peek-char on that port will return the value
returned by the preceding call to peek-char. In particular, a
call to peek-char on an interactive port will hang waiting for
input whenever a call to read-char would have hung.

(eof-object? obj) procedure
Returns #t if obj is an end of �le object, otherwise returns
#f. The precise set of end of �le objects will vary among
implementations, but in any case no end of �le object will
ever be an object that can be read in using read.

(char-ready?) procedure
(char-ready? port) procedure
Returns #t if a character is ready on the input port and
returns #f otherwise. If char-ready returns #t then the
next read-char operation on the given port is guaranteed
not to hang. If the port is at end of �le then char-ready?
returns #t. Port may be omitted, in which case it defaults
to the value returned by current-input-port.
Rationale: Char-ready? exists to make it possible for a pro-
gram to accept characters from interactive ports without getting
stuck waiting for input. Any input editors associated with such
ports must ensure that characters whose existence has been as-
serted by char-ready? cannot be rubbed out. If char-ready?
were to return #f at end of �le, a port at end of �le would
be indistinguishable from an interactive port that has no ready
characters.

6.6.3. Output
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(write obj) library procedure
(write obj port) library procedure
Writes a written representation of obj to the given port .
Strings that appear in the written representation are en-
closed in doublequotes, and within those strings backslash
and doublequote characters are escaped by backslashes.
Character objects are written using the #\ notation. Write
returns an unspeci�ed value. The port argument may be
omitted, in which case it defaults to the value returned by
current-output-port.

(display obj) library procedure
(display obj port) library procedure
Writes a representation of obj to the given port . Strings
that appear in the written representation are not enclosed
in doublequotes, and no characters are escaped within
those strings. Character objects appear in the represen-
tation as if written by write-char instead of by write.
Display returns an unspeci�ed value. The port argument
may be omitted, in which case it defaults to the value re-
turned by current-output-port.
Rationale: Write is intended for producing machine-readable
output and display is for producing human-readable output.
Implementations that allow \slashi�cation" within symbols will
probably want write but not display to slashify funny charac-
ters in symbols.

(newline) library procedure
(newline port) library procedure
Writes an end of line to port . Exactly how this is done
di�ers from one operating system to another. Returns
an unspeci�ed value. The port argument may be omit-
ted, in which case it defaults to the value returned by
current-output-port.

(write-char char) procedure
(write-char char port) procedure
Writes the character char (not an external representa-
tion of the character) to the given port and returns an
unspeci�ed value. The port argument may be omit-
ted, in which case it defaults to the value returned by
current-output-port.

6.6.4. System interface
Questions of system interface generally fall outside of the
domain of this report. However, the following operations
are important enough to deserve description here.

(load �lename) optional procedure
Filename should be a string naming an existing �le con-
taining Scheme source code. The load procedure reads ex-
pressions and de�nitions from the �le and evaluates them

sequentially. It is unspeci�ed whether the results of the
expressions are printed. The load procedure does not
a�ect the values returned by current-input-port and
current-output-port. Load returns an unspeci�ed value.
Rationale: For portability, load must operate on source �les.
Its operation on other kinds of �les necessarily varies among
implementations.

(transcript-on �lename) optional procedure
(transcript-off) optional procedure
Filename must be a string naming an output �le to be cre-
ated. The e�ect of transcript-on is to open the named
�le for output, and to cause a transcript of subsequent
interaction between the user and the Scheme system to
be written to the �le. The transcript is ended by a call
to transcript-off, which closes the transcript �le. Only
one transcript may be in progress at any time, though some
implementations may relax this restriction. The values re-
turned by these procedures are unspeci�ed.
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7. Formal syntax and semantics
This chapter provides formal descriptions of what has al-
ready been described informally in previous chapters of this
report.

7.1. Formal syntax

This section provides a formal syntax for Scheme written
in an extended BNF.
All spaces in the grammar are for legibility. Case is insignif-
icant; for example, #x1A and #X1a are equivalent. hemptyi
stands for the empty string.
The following extensions to BNF are used to make the de-
scription more concise: hthingi* means zero or more occur-
rences of hthingi; and hthingi+ means at least one hthingi.

7.1.1. Lexical structure
This section describes how individual tokens (identi�ers,
numbers, etc.) are formed from sequences of characters.
The following sections describe how expressions and pro-
grams are formed from sequences of tokens.
hIntertoken spacei may occur on either side of any token,
but not within a token.
Tokens which require implicit termination (identi�ers,
numbers, characters, and dot) may be terminated by any
hdelimiteri, but not necessarily by anything else.
The following �ve characters are reserved for future exten-
sions to the language: [ ] { } |
htokeni �! hidenti�eri j hbooleani j hnumberi

j hcharacteri j hstringi
j ( j ) j #( j ' j � j , j ,@ j .

hdelimiteri �! hwhitespacei j ( j ) j " j ;
hwhitespacei �! hspace or newlinei
hcommenti �! ; hall subsequent characters up to a

line breaki
hatmospherei �! hwhitespacei j hcommenti
hintertoken spacei �! hatmospherei*
hidenti�eri �! hinitiali hsubsequenti*

j hpeculiar identi�eri
hinitiali �! hletteri j hspecial initiali
hletteri �! a j b j c j ... j z

hspecial initiali �! ! j $ j % j & j * j / j : j < j =
j > j ? j ^ j _ j ~

hsubsequenti �! hinitiali j hdigiti
j hspecial subsequenti

hdigiti �! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9
hspecial subsequenti �! + j - j . j @
hpeculiar identi�eri �! + j - j ...

hsyntactic keywordi �! hexpression keywordi
j else j => j define
j unquote j unquote-splicing

hexpression keywordi �! quote j lambda j if
j set! j begin j cond j and j or j case
j let j let* j letrec j do j delay
j quasiquote

hvariablei �! hany hidenti�eri that isn't
also a hsyntactic keywordii

hbooleani �! #t j #f
hcharacteri �! #\ hany characteri

j #\ hcharacter namei
hcharacter namei �! space j newline

hstringi �! " hstring elementi* "
hstring elementi �! hany character other than " or \i

j \" j \\
hnumberi �! hnum 2ij hnum 8i

j hnum 10ij hnum 16i

The following rules for hnum Ri, hcomplex Ri, hreal Ri,
hureal Ri, huinteger Ri, and hpre�x Ri should be repli-
cated for R = 2; 8; 10; and 16. There are no rules for
hdecimal 2i, hdecimal 8i, and hdecimal 16i, which means
that numbers containing decimal points or exponents must
be in decimal radix.
hnum Ri �! hpre�x Ri hcomplex Ri
hcomplex Ri �! hreal Ri j hreal Ri @ hreal Ri

j hreal Ri + hureal Ri i j hreal Ri - hureal Ri i
j hreal Ri + i j hreal Ri - i
j + hureal Ri i j - hureal Ri i j + i j - i

hreal Ri �! hsigni hureal Ri
hureal Ri �! huinteger Ri

j huinteger Ri / huinteger Ri
j hdecimal Ri

hdecimal 10i �! huinteger 10i hsu�xi
j . hdigit 10i+ #* hsu�xi
j hdigit 10i+ . hdigit 10i* #* hsu�xi
j hdigit 10i+ #+ . #* hsu�xi

huinteger Ri �! hdigit Ri+ #*
hpre�x Ri �! hradix Ri hexactnessi

j hexactnessi hradix Ri

hsu�xi �! hemptyi
j hexponent markeri hsigni hdigit 10i+

hexponent markeri �! e j s j f j d j l
hsigni �! hemptyi j + j -
hexactnessi �! hemptyi j #i j #e
hradix 2i �! #b
hradix 8i �! #o
hradix 10i �! hemptyi j #d
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hradix 16i �! #x
hdigit 2i �! 0 j 1
hdigit 8i �! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7
hdigit 10i �! hdigiti
hdigit 16i �! hdigit 10i j a j b j c j d j e j f

7.1.2. External representations
hDatumi is what the read procedure (section 6.6.2) suc-
cessfully parses. Note that any string that parses as an
hexpressioni will also parse as a hdatumi.
hdatumi �! hsimple datumi j hcompound datumi
hsimple datumi �! hbooleani j hnumberi

j hcharacteri j hstringi j hsymboli
hsymboli �! hidenti�eri
hcompound datumi �! hlisti j hvectori
hlisti �! (hdatumi*) j (hdatumi+ . hdatumi)

j habbreviationi
habbreviationi �! habbrev pre�xi hdatumi
habbrev pre�xi �! ' j � j , j ,@
hvectori �! #(hdatumi*)

7.1.3. Expressions
hexpressioni �! hvariablei

j hliterali
j hprocedure calli
j hlambda expressioni
j hconditionali
j hassignmenti
j hderived expressioni
j hmacro usei
j hmacro blocki

hliterali �! hquotationi j hself-evaluatingi
hself-evaluatingi �! hbooleani j hnumberi

j hcharacteri j hstringi
hquotationi �! 'hdatumi j (quote hdatumi)
hprocedure calli �! (hoperatori hoperandi*)
hoperatori �! hexpressioni
hoperandi �! hexpressioni
hlambda expressioni �! (lambda hformalsi hbodyi)
hformalsi �! (hvariablei*) j hvariablei

j (hvariablei+ . hvariablei)
hbodyi �! hde�nitioni* hsequencei
hsequencei �! hcommandi* hexpressioni
hcommandi �! hexpressioni
hconditionali �! (if htesti hconsequenti halternatei)
htesti �! hexpressioni
hconsequenti �! hexpressioni
halternatei �! hexpressioni j hemptyi

hassignmenti �! (set! hvariablei hexpressioni)
hderived expressioni �!

(cond hcond clausei+)
j (cond hcond clausei* (else hsequencei))
j (case hexpressioni

hcase clausei+)
j (case hexpressioni

hcase clausei*
(else hsequencei))

j (and htesti*)
j (or htesti*)
j (let (hbinding speci*) hbodyi)
j (let hvariablei (hbinding speci*) hbodyi)
j (let* (hbinding speci*) hbodyi)
j (letrec (hbinding speci*) hbodyi)
j (begin hsequencei)
j (do (hiteration speci*)

(htesti hdo resulti)
hcommandi*)

j (delay hexpressioni)
j hquasiquotationi

hcond clausei �! (htesti hsequencei)
j (htesti)
j (htesti => hrecipienti)

hrecipienti �! hexpressioni
hcase clausei �! ((hdatumi*) hsequencei)
hbinding speci �! (hvariablei hexpressioni)
hiteration speci �! (hvariablei hiniti hstepi)

j (hvariablei hiniti)
hiniti �! hexpressioni
hstepi �! hexpressioni
hdo resulti �! hsequencei j hemptyi
hmacro usei �! (hkeywordi hdatumi*)
hkeywordi �! hidenti�eri
hmacro blocki �!

(let-syntax (hsyntax speci*) hbodyi)
j (letrec-syntax (hsyntax speci*) hbodyi)

hsyntax speci �! (hkeywordi htransformer speci)

7.1.4. Quasiquotations
The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an
in�nite number of production rules. Imagine a copy of the
following rules for D = 1; 2; 3; : : :. D keeps track of the
nesting depth.
hquasiquotationi �! hquasiquotation 1i
hqq template 0i �! hexpressioni
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hquasiquotation Di �! �hqq template Di
j (quasiquote hqq template Di)

hqq template Di �! hsimple datumi
j hlist qq template Di
j hvector qq template Di
j hunquotation Di

hlist qq template Di �! (hqq template or splice Di*)
j (hqq template or splice Di+ . hqq template Di)
j 'hqq template Di
j hquasiquotation D + 1i

hvector qq template Di �! #(hqq template or splice Di*)
hunquotation Di �! ,hqq template D � 1i

j (unquote hqq template D � 1i)
hqq template or splice Di �! hqq template Di

j hsplicing unquotation Di
hsplicing unquotation Di �! ,@hqq template D � 1i

j (unquote-splicing hqq template D � 1i)
In hquasiquotationis, a hlist qq template Di can some-
times be confused with either an hunquotation Di or
a hsplicing unquotation Di. The interpretation as an
hunquotationi or hsplicing unquotation Di takes prece-
dence.

7.1.5. Transformers
htransformer speci �!

(syntax-rules (hidenti�eri*) hsyntax rulei*)
hsyntax rulei �! (hpatterni htemplatei)
hpatterni �! hpattern identi�eri

j (hpatterni*)
j (hpatterni+ . hpatterni)
j (hpatterni* hpatterni hellipsisi)
j #(hpatterni*)
j #(hpatterni* hpatterni hellipsisi)
j hpattern datumi

hpattern datumi �! hstringi
j hcharacteri
j hbooleani
j hnumberi

htemplatei �! hpattern identi�eri
j (htemplate elementi*)
j (htemplate elementi+ . htemplatei)
j #(htemplate elementi*)
j htemplate datumi

htemplate elementi �! htemplatei
j htemplatei hellipsisi

htemplate datumi �! hpattern datumi
hpattern identi�eri �! hany identi�er except ...i
hellipsisi �! hthe identi�er ...i

7.1.6. Programs and de�nitions
hprogrami �! hcommand or de�nitioni*

hcommand or de�nitioni �! hcommandi
j hde�nitioni
j hsyntax de�nitioni
j (begin hcommand or de�nitioni+)

hde�nitioni �! (define hvariablei hexpressioni)
j (define (hvariablei hdef formalsi) hbodyi)
j (begin hde�nitioni*)

hdef formalsi �! hvariablei*
j hvariablei* . hvariablei

hsyntax de�nitioni �!
(define-syntax hkeywordi htransformer speci)

7.2. Formal semantics
This section provides a formal denotational semantics for
the primitive expressions of Scheme and selected built-in
procedures. The concepts and notation used here are de-
scribed in [29]; the notation is summarized below:
h : : : i sequence formation
s # k kth member of the sequence s (1-based)
#s length of sequence s
s x t concatenation of sequences s and t
s y k drop the �rst k members of sequence s
t ! a; b McCarthy conditional \if t then a else b"
�[x=i] substitution \� with x for i"
x in D injection of x into domain D
x j D projection of x to domain D

The reason that expression continuations take sequences
of values instead of single values is to simplify the formal
treatment of procedure calls and multiple return values.
The boolean 
ag associated with pairs, vectors, and strings
will be true for mutable objects and false for immutable
objects.
The order of evaluation within a call is unspeci�ed. We
mimic that here by applying arbitrary permutations per-
mute and unpermute, which must be inverses, to the argu-
ments in a call before and after they are evaluated. This is
not quite right since it suggests, incorrectly, that the order
of evaluation is constant throughout a program (for any
given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evalua-
tion would be.
The storage allocator new is implementation-dependent,
but it must obey the following axiom: if new � 2 L, then
� (new � j L) # 2 = false.
The de�nition of K is omitted because an accurate de�ni-
tion of K would complicate the semantics without being
very interesting.
If P is a program in which all variables are de�ned before
being referenced or assigned, then the meaning of P is

E [[((lambda (I*) P') hunde�nedi : : : )]]
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where I* is the sequence of variables de�ned in P, P0 is the
sequence of expressions obtained by replacing every de�ni-
tion in P by an assignment, hunde�nedi is an expression
that evaluates to unde�ned, and E is the semantic function
that assigns meaning to expressions.

7.2.1. Abstract syntax
K 2 Con constants, including quotations
I 2 Ide identi�ers (variables)
E 2 Exp expressions
� 2 Com = Exp commands

Exp �! K j I j (E0 E*)
j (lambda (I*) �* E0)
j (lambda (I* . I) �* E0)
j (lambda I �* E0)
j (if E0 E1 E2) j (if E0 E1)
j (set! I E)

7.2.2. Domain equations
� 2 L locations
� 2 N natural numbers

T = ffalse, trueg booleans
Q symbols
H characters
R numbers
Ep = L� L� T pairs
Ev = L*� T vectors
Es = L*� T strings
M = ffalse, true, null, unde�ned, unspeci�edg

miscellaneous
� 2 F = L� (E*! K ! C) procedure values
� 2 E = Q+ H+ R+ Ep + Ev + Es + M+ F

expressed values
� 2 S = L ! (E� T) stores
� 2 U = Ide! L environments
� 2 C = S ! A command continuations
� 2 K = E*! C expression continuations

A answers
X errors

7.2.3. Semantic functions
K : Con! E
E : Exp! U ! K ! C
E* : Exp*! U ! K ! C
C : Com*! U ! C ! C

De�nition of K deliberately omitted.
E [[K]] = ��� : send (K[[K]])�

E [[I]] = ��� : hold (lookup � I)
(single(�� : � = unde�ned !

wrong \unde�ned variable";
send � �))

E [[(E0 E*)]] =
��� : E*(permute(hE0i x E*))

�
(��* : ((��* : applicate (�* # 1) (�* y 1) �)

(unpermute �*)))
E [[(lambda (I*) �* E0)]] =
��� : �� :

new � 2 L !
send (hnew � j L;

��*�0 :#�* = #I*!
tievals(��* : (��0 : C[[�*]]�0(E [[E0]]�0�0))

(extends � I* �*))
�*;

wrong \wrong number of arguments"i
in E)

�
(update (new � j L) unspeci�ed �);

wrong \out of memory" �
E [[(lambda (I* . I) �* E0)]] =
��� : �� :

new � 2 L !
send (hnew � j L;

��*�0 :#�* � #I*!
tievalsrest
(��* : (��0 : C[[�*]]�0(E [[E0]]�0�0))

(extends � (I* x hIi) �*))
�*
(#I*);

wrong \too few arguments"i in E)
�
(update (new � j L) unspeci�ed �);

wrong \out of memory" �
E [[(lambda I �* E0)]] = E [[(lambda (. I) �* E0)]]
E [[(if E0 E1 E2)]] =
��� : E [[E0]] � (single (�� : truish �! E [[E1]]��;

E [[E2]]��))
E [[(if E0 E1)]] =
��� : E [[E0]] � (single (�� : truish �! E [[E1]]��;

send unspeci�ed �))
Here and elsewhere, any expressed value other than unde�ned
may be used in place of unspeci�ed.
E [[(set! I E)]] =
��� : E [[E]] � (single(�� : assign (lookup � I)

�
(send unspeci�ed �)))

E*[[ ]] = ��� : �h i
E*[[E0 E*]] =
��� : E [[E0]] � (single(��0 : E*[[E*]] � (��* : � (h�0i x �*))))

C[[ ]] = ��� : �
C[[�0 �*]] = ��� : E [[�0]] � (��* : C[[�*]]��)
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7.2.4. Auxiliary functions
lookup : U ! Ide! L
lookup = ��I : �I
extends : U ! Ide*! L*! U
extends =
��I*�* :#I* = 0! �;

extends (�[(�* # 1)=(I* # 1)]) (I* y 1) (�* y 1)
wrong : X ! C [implementation-dependent]
send : E ! K ! C
send = ��� : �h�i
single : (E ! C)! K
single =
� �* :#�* = 1!  (�* # 1);

wrong \wrong number of return values"
new : S ! (L+ ferrorg) [implementation-dependent]
hold : L ! K ! C
hold = ���� : send (�� # 1)��
assign : L ! E ! C ! C
assign = ����� : �(update ���)
update : L ! E ! S ! S
update = ���� : �[h�; truei=�]
tievals : (L*! C)! E*! C
tievals =
� �*� :#�* = 0!  h i�;

new � 2 L ! tievals (��* :  (hnew � j Li x �*))
(�* y 1)
(update(new � j L)(�* # 1)�);

wrong \out of memory"�
tievalsrest : (L*! C)! E*! N ! C
tievalsrest =
� �*� : list (drop�rst �*�)

(single(�� : tievals  ((take�rst �*�) x h�i)))
drop�rst = �ln : n = 0! l; drop�rst (l y 1)(n� 1)
take�rst = �ln : n = 0! h i; hl # 1i x (take�rst (l y 1)(n� 1))
truish : E ! T
truish = �� : � = false ! false; true
permute : Exp*! Exp* [implementation-dependent]
unpermute : E*! E* [inverse of permute]
applicate : E ! E*! K ! C
applicate =
���*� : � 2 F ! (� j F # 2)�*�;wrong \bad procedure"

onearg : (E ! K ! C)! (E*! K ! C)
onearg =
���*� :#�* = 1! �(�* # 1)�;

wrong \wrong number of arguments"
twoarg : (E ! E ! K ! C)! (E*! K ! C)
twoarg =
���*� :#�* = 2! �(�* # 1)(�* # 2)�;

wrong \wrong number of arguments"

list : E*! K ! C
list =
��*� :#�* = 0! send null �;

list (�* y 1)(single(�� : consh�* # 1; �i�))
cons : E*! K ! C
cons =

twoarg (��1�2�� : new � 2 L !
(��0 : new �0 2 L !

send (hnew � j L;new �0 j L; truei
in E)

�
(update(new �0 j L)�2�0);

wrong \out of memory"�0)
(update(new � j L)�1�);
wrong \out of memory"�)

less : E*! K ! C
less =

twoarg (��1�2� : (�1 2 R ^ �2 2 R)!
send (�1 j R < �2 j R ! true; false)�;
wrong \non-numeric argument to <")

add : E*! K ! C
add =

twoarg (��1�2� : (�1 2 R ^ �2 2 R)!
send ((�1 j R+ �2 j R) in E)�;
wrong \non-numeric argument to +")

car : E*! K ! C
car =

onearg (��� : � 2 Ep ! hold (� j Ep # 1)�;
wrong \non-pair argument to car")

cdr : E*! K ! C [similar to car]
setcar : E*! K ! C
setcar =

twoarg (��1�2� : �1 2 Ep !
(�1 j Ep # 3)! assign (�1 j Ep # 1)

�2
(send unspeci�ed �);

wrong \immutable argument to set-car!";
wrong \non-pair argument to set-car!")

eqv : E*! K ! C
eqv =

twoarg (��1�2� : (�1 2 M ^ �2 2 M)!
send (�1 j M = �2 j M ! true; false)�;

(�1 2 Q ^ �2 2 Q)!
send (�1 j Q = �2 j Q ! true; false)�;

(�1 2 H ^ �2 2 H)!
send (�1 j H = �2 j H ! true; false)�;

(�1 2 R ^ �2 2 R)!
send (�1 j R = �2 j R ! true; false)�;

(�1 2 Ep ^ �2 2 Ep)!
send ((�p1p2 : ((p1 # 1) = (p2 # 1)^

(p1 # 2) = (p2 # 2))! true;
false)

(�1 j Ep)
(�2 j Ep))
�;
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(�1 2 Ev ^ �2 2 Ev)! : : : ;
(�1 2 Es ^ �2 2 Es)! : : : ;
(�1 2 F ^ �2 2 F)!

send ((�1 j F # 1) = (�2 j F # 1)! true; false)
�;

send false �)
apply : E*! K ! C
apply =

twoarg (��1�2� : �1 2 F ! valueslist h�2i(��* : applicate �1�*�);
wrong \bad procedure argument to apply")

valueslist : E*! K ! C
valueslist =

onearg (��� : � 2 Ep !
cdrh�i

(��* : valueslist
�*
(��* : carh�i(single(�� : �(h�i x �*)))));

� = null ! �h i;
wrong \non-list argument to values-list")

cwcc : E*! K ! C [call-with-current-continuation]
cwcc =

onearg (��� : � 2 F !
(�� : new � 2 L !

applicate �
hhnew � j L; ��*�0 : ��*i in Ei
�
(update (new � j L)

unspeci�ed
�);

wrong \out of memory"�);
wrong \bad procedure argument")

values : E*! K ! C
values = ��*� : ��*
cwv : E*! K ! C [call-with-values]
cwv =

twoarg (��1�2� : applicate �1h i(��* : applicate �2 �*))

7.3. Derived expression types

This section gives macro de�nitions for the derived expres-
sion types in terms of the primitive expression types (lit-
eral, variable, call, lambda, if, set!). See section 6.4 for
a possible de�nition of delay.

(define-syntax cond
(syntax-rules (else =>)
((cond (else result1 result2 ...))
(begin result1 result2 ...))

((cond (test => result))
(let ((temp test))
(if temp (result temp))))

((cond (test => result) clause1 clause2 ...)
(let ((temp test))
(if temp

(result temp)
(cond clause1 clause2 ...))))

((cond (test)) test)
((cond (test) clause1 clause2 ...)
(let ((temp test))
(if temp

temp
(cond clause1 clause2 ...))))

((cond (test result1 result2 ...))
(if test (begin result1 result2 ...)))

((cond (test result1 result2 ...)
clause1 clause2 ...)

(if test
(begin result1 result2 ...)
(cond clause1 clause2 ...)))))

(define-syntax case
(syntax-rules (else)
((case (key ...)

clauses ...)
(let ((atom-key (key ...)))
(case atom-key clauses ...)))

((case key
(else result1 result2 ...))

(begin result1 result2 ...))
((case key

((atoms ...) result1 result2 ...))
(if (memv key '(atoms ...))

(begin result1 result2 ...)))
((case key

((atoms ...) result1 result2 ...)
clause clauses ...)

(if (memv key '(atoms ...))
(begin result1 result2 ...)
(case key clause clauses ...)))))

(define-syntax and
(syntax-rules ()
((and) #t)
((and test) test)
((and test1 test2 ...)
(if test1 (and test2 ...) #f))))

(define-syntax or
(syntax-rules ()
((or) #f)
((or test) test)
((or test1 test2 ...)
(let ((x test1))

(if x x (or test2 ...))))))

(define-syntax let
(syntax-rules ()
((let ((name val) ...) body1 body2 ...)
((lambda (name ...) body1 body2 ...)
val ...))

((let tag ((name val) ...) body1 body2 ...)
((letrec ((tag (lambda (name ...)

body1 body2 ...)))
tag)
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val ...))))

(define-syntax let*
(syntax-rules ()
((let* () body1 body2 ...)
(let () body1 body2 ...))

((let* ((name1 val1) (name2 val2) ...)
body1 body2 ...)

(let ((name1 val1))
(let* ((name2 val2) ...)

body1 body2 ...)))))

The following letrec macro uses the symbol <undefined>
in place of an expression which returns something that
when stored in a location makes it an error to try to ob-
tain the value stored in the location (no such expression is
de�ned in Scheme). A trick is used to generate the tempo-
rary names needed to avoid specifying the order in which
the values are evaluated. This could also be accomplished
by using an auxiliary macro.

(define-syntax letrec
(syntax-rules ()
((letrec ((var1 init1) ...) body ...)
(letrec "generate temp names"
(var1 ...)
()
((var1 init1) ...)
body ...))

((letrec "generate temp names"
()
(temp1 ...)
((var1 init1) ...)
body ...)

(let ((var1 <undefined>) ...)
(let ((temp1 init1) ...)

(set! var1 temp1)
...
body ...)))

((letrec "generate temp names"
(x y ...)
(temp ...)
((var1 init1) ...)
body ...)

(letrec "generate temp names"
(y ...)
(newtemp temp ...)
((var1 init1) ...)
body ...))))

(define-syntax begin
(syntax-rules ()
((begin exp ...)
((lambda () exp ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression

in the body of a lambda expression. In any case, note that
these rules apply only if the body of the begin contains no
de�nitions.

(define-syntax begin
(syntax-rules ()
((begin exp)
exp)

((begin exp1 exp2 ...)
(let ((x exp1))
(begin exp2 ...)))))

The following de�nition of do uses a trick to expand the
variable clauses. As with letrec above, an auxiliary macro
would also work. The expression (if #f #f) is used to
obtain an unspeci�c value.

(define-syntax do
(syntax-rules ()
((do ((var init step ...) ...)

(test expr ...)
command ...)

(letrec
((loop

(lambda (var ...)
(if test

(begin
(if #f #f)
expr ...)

(begin
command
...
(loop (do "step" var step ...)

...))))))
(loop init ...)))

((do "step" x)
x)

((do "step" x y)
y)))
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NOTES

Language changes
This section enumerates the changes that have been made
to Scheme since the \Revised4 report" [6] was published.

� The report is now a superset of the IEEE standard
for Scheme [13]: implementations that conform to the
report will also conform to the standard. This required
the following changes:
{ The empty list is now required to count as true.
{ The classi�cation of features as essential or
inessential has been removed. There are now
three classes of built-in procedures: primitive, li-
brary, and optional. The optional procedures are
load, with-input-from-file, with-output-
to-file, transcript-on, transcript-off, and
interaction-environment, and - and / with
more than two arguments. None of these are in
the IEEE standard.

{ Programs are allowed to rede�ne built-in proce-
dures. Doing so will not change the behavior of
other built-in procedures.

� Port has been added to the list of disjoint types.
� The macro appendix has been removed. High-level
macros are now part of the main body of the report.
The rewrite rules for derived expressions have been
replaced with macro de�nitions. There are no reserved
identi�ers.

� Syntax-rules now allows vector patterns.
� Multiple-value returns, eval, and dynamic-wind have
been added.

� The calls that are required to be implemented in a
properly tail-recursive fashion are de�ned explicitly.

� `@' can be used within identi�ers. `|' is reserved for
possible future extensions.

ADDITIONAL MATERIAL
The Internet Scheme Repository at

http://www.cs.indiana.edu/scheme-repository/
contains an extensive Scheme bibliography, as well as pa-
pers, programs, implementations, and other material re-
lated to Scheme.

EXAMPLE
Integrate-system integrates the system

y0k = fk(y1; y2; : : : ; yn); k = 1; : : : ; n
of di�erential equations with the method of Runge-Kutta.
The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1; : : : ; yn) and produces a system derivative (the val-
ues y01; : : : ; y0n). The parameter initial-state provides
an initial system state, and h is an initial guess for the
length of the integration step.
The value returned by integrate-system is an in�nite
stream of system states.
(define integrate-system

(lambda (system-derivative initial-state h)
(let ((next (runge-kutta-4 system-derivative h)))

(letrec ((states
(cons initial-state

(delay (map-streams next
states)))))

states))))
Runge-Kutta-4 takes a function, f, that produces a system
derivative from a system state. Runge-Kutta-4 produces
a function that takes a system state and produces a new
system state.
(define runge-kutta-4

(lambda (f h)
(let ((*h (scale-vector h))

(*2 (scale-vector 2))
(*1/2 (scale-vector (/ 1 2)))
(*1/6 (scale-vector (/ 1 6))))

(lambda (y)
;; y is a system state
(let* ((k0 (*h (f y)))

(k1 (*h (f (add-vectors y (*1/2 k0)))))
(k2 (*h (f (add-vectors y (*1/2 k1)))))
(k3 (*h (f (add-vectors y k2)))))

(add-vectors y
(*1/6 (add-vectors k0

(*2 k1)
(*2 k2)
k3))))))))

(define elementwise
(lambda (f)
(lambda vectors

(generate-vector
(vector-length (car vectors))
(lambda (i)

(apply f
(map (lambda (v) (vector-ref v i))

vectors)))))))
(define generate-vector

(lambda (size proc)
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(let ((ans (make-vector size)))
(letrec ((loop

(lambda (i)
(cond ((= i size) ans)

(else
(vector-set! ans i (proc i))
(loop (+ i 1)))))))

(loop 0)))))
(define add-vectors (elementwise +))
(define scale-vector

(lambda (s)
(elementwise (lambda (x) (* x s)))))

Map-streams is analogous to map: it applies its �rst argu-
ment (a procedure) to all the elements of its second argu-
ment (a stream).
(define map-streams

(lambda (f s)
(cons (f (head s))

(delay (map-streams f (tail s))))))
In�nite streams are implemented as pairs whose car holds
the �rst element of the stream and whose cdr holds a
promise to deliver the rest of the stream.
(define head car)
(define tail

(lambda (stream) (force (cdr stream))))

The following illustrates the use of integrate-system in
integrating the system

C dvC
dt = �iL � vC

R

LdiL
dt = vC

which models a damped oscillator.
(define damped-oscillator

(lambda (R L C)
(lambda (state)

(let ((Vc (vector-ref state 0))
(Il (vector-ref state 1)))

(vector (- 0 (+ (/ Vc (* R C)) (/ Il C)))
(/ Vc L))))))

(define the-states
(integrate-system

(damped-oscillator 10000 1000 .001)
'#(1 0)
.01))
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,

KEYWORDS, AND PROCEDURES

The principal entry for each term, procedure, or keyword is
listed �rst, separated from the other entries by a semicolon.
! 5
' 8; 26
* 22
+ 22; 5, 42
, 13; 26
,@ 13
- 22; 5
-> 5
... 5; 14
/ 22
; 5
< 21; 42
<= 21
= 21; 22
=> 10
> 21
>= 21
? 4
` 13
abs 22; 24
acos 23
and 11; 43
angle 24
append 27
apply 32; 8, 43
asin 23
assoc 27
assq 27
assv 27
atan 23
#b 21; 38
backquote 13
begin 12; 16, 44
binding 6
binding construct 6
boolean? 25; 6
bound 6
caar 26
cadr 26
call 9
call by need 13
call-with-current-continuation 33; 8, 34, 43
call-with-input-file 35
call-with-output-file 35
call-with-values 34; 8, 43
call/cc 34
car 26; 42

case 10; 43
catch 34
cdddar 26
cddddr 26
cdr 26
ceiling 23
char->integer 29
char-alphabetic? 29
char-ci<=? 29
char-ci<? 29
char-ci=? 29
char-ci>=? 29
char-ci>? 29
char-downcase 29
char-lower-case? 29
char-numeric? 29
char-ready? 36
char-upcase 29
char-upper-case? 29
char-whitespace? 29
char<=? 29
char<? 29
char=? 29
char>=? 29
char>? 29
char? 29; 6
close-input-port 36
close-output-port 36
combination 9
comma 13
comment 5; 38
complex? 21; 19
cond 10; 15, 43
cons 26
constant 7
continuation 33
cos 23
current-input-port 35
current-output-port 35
#d 21
define 16; 14
define-syntax 17
de�nition 16
delay 13; 32
denominator 23
display 37
do 12; 44
dotted pair 25
dynamic-wind 34; 33
#e 21; 38
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else 10
empty list 25; 6, 26
eof-object? 36
eq? 18; 10
equal? 19
equivalence predicate 17
eqv? 17; 7, 10, 42
error 4
escape procedure 33
eval 35; 8
even? 22
exact 17
exact->inexact 24
exact? 21
exactness 19
exp 23
expt 24
#f 25
false 6; 25
floor 23
for-each 32
force 32; 13
gcd 23
hygienic 13
#i 21; 38
identi�er 5; 6, 28, 38
if 10; 41
imag-part 24
immutable 7
implementation restriction 4; 20
improper list 26
inexact 17
inexact->exact 24; 20
inexact? 21
initial environment 17
input-port? 35
integer->char 29
integer? 21; 19
interaction-environment 35
internal de�nition 16
keyword 13; 38
lambda 9; 16, 41
lazy evaluation 13
lcm 23
length 27; 20
let 11; 12, 15, 16, 43
let* 11; 16, 44
let-syntax 14; 16
letrec 11; 16, 44
letrec-syntax 14; 16

library 3
library procedure 17
list 27
list->string 30
list->vector 31
list-ref 27
list-tail 27
list? 26
load 37
location 7
log 23
macro 13
macro keyword 13
macro transformer 13
macro use 13
magnitude 24
make-polar 24
make-rectangular 24
make-string 30
make-vector 31
map 32
max 22
member 27
memq 27
memv 27
min 22
modulo 22
mutable 7
negative? 22
newline 37
nil 25
not 25
null-environment 35
null? 26
number 19
number->string 24
number? 21; 6, 19
numerator 23
numerical types 19
#o 21; 38
object 3
odd? 22
open-input-file 36
open-output-file 36
optional 3
or 11; 43
output-port? 35
pair 25
pair? 26; 6
peek-char 36
port 35
port? 6
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positive? 22
predicate 17
procedure call 9
procedure? 31; 6
promise 13; 32
proper tail recursion 7
quasiquote 13; 26
quote 8; 26
quotient 22
rational? 21; 19
rationalize 23
read 36; 26, 39
read-char 36
real-part 24
real? 21; 19
referentially transparent 13
region 6; 10, 11, 12
remainder 22
reverse 27
round 23
scheme-report-environment 35
set! 10; 16, 41
set-car! 26
set-cdr! 26
setcar 42
simplest rational 23
sin 23
sqrt 24
string 30
string->list 30
string->number 24
string->symbol 28
string-append 30
string-ci<=? 30
string-ci<? 30
string-ci=? 30
string-ci>=? 30
string-ci>? 30
string-copy 30
string-fill! 31
string-length 30; 20
string-ref 30
string-set! 30; 28
string<=? 30
string<? 30
string=? 30
string>=? 30
string>? 30
string? 30; 6
substring 30
symbol->string 28; 7
symbol? 28; 6
syntactic keyword 6; 5, 13, 38

syntax de�nition 17
syntax-rules 14; 17
#t 25
tail call 7
tan 23
token 38
top level environment 17; 6
transcript-off 37
transcript-on 37
true 6; 10, 25
truncate 23
type 6
unbound 6; 8, 16
unquote 13; 26
unquote-splicing 13; 26
unspeci�ed 4
valid indexes 30; 31
values 34; 9
variable 6; 5, 8, 38
vector 31
vector->list 31
vector-fill! 31
vector-length 31; 20
vector-ref 31
vector-set! 31
vector? 31; 6
whitespace 5
with-input-from-file 35
with-output-to-file 35
write 37; 13
write-char 37
#x 21; 39
zero? 22


