svn-buildpackage - maintaining Debian
packages with Subversion

Eduard Bloch

$LastChangedDate: 2005-09-23 16:17:33 +0200 (Fr, 23 Sep 2005) $

Copyright Notice

svn-buildpackage, all associated scripts and programs, this manual, and all build scripts are
Copyright © 2003 Eduard Bloch.

See ‘Copyright” on page 19 for details.

Contents

Introduction
1.1 Purpose.
1.2 Why a version control system? L.
1.3 Features e
1.4 Contentsoverview e
1.5 Popular repositorylayouts oo oo o
Getting started
21 Quickguide
22 Basicsvnusage e
2.3 Creating Subversionrepository 0 oL
2.4 Using by multipledevelopers
241 SVNoverSSH. e
242 ANONYymMOUSACCESS v v vt vttt et

Importing Debian packages

3.1 Importing from existing source packagefiles
3.2 On-Build-Timemerging
Common tasks

41 Checkout oL
42 Buildingthepackage L o
43 Workingwithsource L o e
4.4 Handling new upstream versionso

45 FinalizingtheRevision L o o

CONTENTS

ii

5 Command reference

51 svn-inject

5.1.1
51.2
513

NAME
SYNOPSIS
"OPTIONS"

52 svn-buildpackage

521
522
523
524
525
5.2.6
527
528

"OPTIONS"
"CONFIGURATION FILE"
"DIRECTORY LAYOUT HANDLING"

53 svn-upgrade

53.1
53.2
5.3.3
534

SYNOPSIS
"DESCRIPTION"
"OPTIONS"

6 Further documentation

6.1 Variouslinks

6.2 Copyright

13
13
13
13
13
14
14
14
14
14
16
16
16
17
17
17
17
18
18

Chapter 1

Introduction

1.1 Purpose

This short document is only intended to give a short help in converting packages to Subversion
management. It is primarily intended for developers not really familiar with Subversion or
CVS management and/or converting from maintaining their packages using common tools
(dpkg-dev, devscripts) only to version control system Subversion.

1.2 Why a version control system?

But the first question may be: why use a version control system at all? Look at how the source
is handled by the Debian package. First, we have the pure upstream source, which is often
maintained by another person. The upstream author has his own development line and re-
leases the source in snapshots (often called releases or program versions).

The Debian maintainer adds an own set of modifications, leading to an own version of the
upstream package. The difference set between this two version finally ends in Debian’s .diff.gz
files, and this patchset is often appliable to future upstream versions in order to get the “Debian
versions”.

So the obvious way to deal with source upgrades/changes is using local copies, patch, different
patchutils and scripts to automate all this, eg. uupdate. However, it often becomes nasty and
uncomfortable, and there is no way to undo changes that you may do by mistakes.

At this point, the Subversion system can be used to simplify that work. It does the same things
that you normaly would do by-hand but keeps it in an own archive (a repository). It stores
the development lines of Upstream and Debian source, keeping them in different directories
(different branches). The branches are wired internally (the VCS “knows” the history of the file
and tracks the differences between the Upstream and Debian versions). When a new upstream
version is installed, the differences between the old and new upstream versions and the Debian
version are merged together.

Chapter 1. Introduction 2

You can create snapshots of your Debian version (“tag” it) and switch back to a previous state,
or see the changes done in the files. You can store when commiting the file to the repository or
place custom tags on the files (“properties”) serving various purposes.

1.3 Features

svn-buildpackage and other scripts around it has been created to do follow things:
¢ keep Debian package under revision control, which means storing different versions of
files in a Subversion repository
¢ allow easy walking back trough time using svn command
* easy retrieval of past versions
¢ keep track of upstream source versions and modified Debian versions

¢ easy installation of new upstream versions, merging the Debian changes into it when
needed (similar to the uupdate program)

¢ automated package building in clean environment, notifying about uncommited changes

* create version tags when requested to do the final build and update changelog when
needed

¢ allow co-work of multiple Debian developers on the same project

¢ auto-configure the repository layout, making it easy to use by people without knowing
much about Subversion usage (mostly you need only the add, rm and mv commands of
svn)

¢ allow to store only the Debian specific changes in the repository and merge them into the
upstream source in the build area (which nicely completes build systems like dpatch or

dbs)

e If wished, keep the upstream tarballs inside of the repository

1.4 Contents overview

There are currently three scripts provided by the svn-buildpackage package:

¢ svn-inject: script used to insert an existing Debian package into a Subversion repository,
creating the repository layout as needed.

¢ svn-buildpackage: exports the contents of the directory associated with the starting di-
rectory from the Subversion repository to the clean environment and build the package
there

Chapter 1. Introduction 3

¢ svn-upgrade: similar to uupdate, upgrades the trunk to a new upstream version, pre-
serving and merging Debian specific changes

1.5 Popular repository layouts

There are different ways to store the packages in the repositories (or in multiple repositories
at your choice). svn-buildpackage normaly expects a directory structure similar to the one
well described in the Subversion Book, which looks like:

packaged/
trunk/
branches/
branches/upstream
tags/

projectB/
trunk/
branches/
branches/developerFoo
tags/

packageA above may be a typical upstream-based source package and a projectB may be a
Debian native package with a separate branch created by developerFoo for his own experi-
ments. See Subversion Book/Branches (http://svnbook.red-bean.com/html-chunk/
ch04s02.html) for more details about using Subversion branches.

Also note that Tags work quite different than those in CVS. Subversion does not maintain
magic tags associated with some files. Instead, it tracks the file state and moves, so Tagging
something means creating a copy (inside of the Repository, harddisk-space efficient) of a cer-
tain version of the file set. So the Debian branch of the released package source is contained in
trunk/ and is tagged by copying (mirroring) the trunk tree to tags /DEBIAN-REVISION. The
same happens for the upstream releases. In addition, the most recent upstream version is mir-
rored to branches/upstream/current. After few package upgrade cycles, the directory
tree may look so:

svn 1ls -R file:///home/user/svn-repo/dev/translucency
branches/

branches/upstream/

branches/upstream/0.5.9/
branches/upstream/0.5.9/AUTHORS
branches/upstream/0.5.9/COPYING

(€}

branches/upstream/0.6.0/
branches/upstream/0.6.0/AUTHORS

http://svnbook.red-bean.com/html-chunk/ch04s02.html
http://svnbook.red-bean.com/html-chunk/ch04s02.html

Chapter 1. Introduction

branches/upstream/0.6.0/COPYING

branches/upstream/current/
branches/upstream/current /AUTHORS
branches/upstream/current/COPYING

same
tags/

tags/0.5.
tags/0.5.
tags/0.5.
tags/0.6.
tags/0.6.
tags/0.6.
tags/0.6.
tags/0.6.

trunk/

stuff as in 0.6.0
9-1/

9-1/debian/
9-1/debian/README.Debian

0-1/
0-1/AUTHORS

0-1/debian/
0-1/debian/README.Debian
0-1/debian/changelog

trunk/AUTHORS
trunk/COPYING
trunk where 0.6.0-2 is beeing prepared

svn-buildpackage also supports the second repository layout suggested in the Subversion
Book (function/package) but svn-inject prefers the one documented above. Both svn-
buildpackage and svn-upgrade should be able to auto-detect the repository layout and the
location of package files.

In theory, you do not have to follow that examples and place the trunk, branches and tags
directory on the locations you like more. But svn-buildpackage and other scripts won’t locate
the files automaticaly so you will need to edit the .svn/deb-layout file in your working direc-
tory and set paths. See the old abstract (file:///usr/share/doc/svn-buildpackage/
CONF'IG) about how auto-detection works and the config example (file:///usr/share/
doc/svn-buildpackage/examples/config.example).

Finaly, the working directory structure on your development system may look so:

dev/ # base directory,

dev/foo # trunk directories of various packages

dev/bar # contents correspond to trunk,

see above

dev/tarballs # where "orig" tarballs are stored,
dev/build-area # where the packages are exported temporarily and built

may be under version control or not

may be under VC or not

file:///usr/share/doc/svn-buildpackage/CONFIG
file:///usr/share/doc/svn-buildpackage/CONFIG
file:///usr/share/doc/svn-buildpackage/examples/config.example
file:///usr/share/doc/svn-buildpackage/examples/config.example

Chapter 2

Getting started

Besides of the packages that are installed by dependencies when you install
svn-buildpackage, you may need ssh and the obligatory tool chain: dpkg-dev,
build-essential and all the packages they pull into the system.

2.1 Quick guide

Here is a quick guide for those who wish to build an existing package using an existing, public
available SVN repository. To create own repositories, skip this section and look for more details
below.

* svn co <svn://server/path/to/trunk> package

e mkdir tarballs

¢ cp dir-where-you-keep-the-source/package_version.orig.tar.gz tarballs/

NOTE: you need the upstream source tarballs, stored under a usual dpkg-source-
compatible filename in tarballs/

¢ cd package

¢ svn-buildpackage -us -uc -rfakeroot

2.2 Basic svn usage

You need only few commands to start using svn with svn-buildpackage scripts. If you wish
to learn more about it, read parts of the the Subversion Book (http://svnbook.red-bean.
com/html-chunk/). The most used commands are:

® add - put new files unto the revision contol

http://svnbook.red-bean.com/html-chunk/
http://svnbook.red-bean.com/html-chunk/

Chapter 2. Getting started 6

¢ rm—remove the files from the repository

¢ mv —move files around, leting revision control system know about it
* commit —commit your changes to the repository

* resolved - tell svn that you have resolved a conflict

* diff — creates a “diff -u” between two versions, specified by file revision number or by
date. See the diff --help output.

® cat -r Revision —useful to browse in some previous revision of the file

If you are familiar with CVS you will probably know almost all you need.

2.3 Creating Subversion repository

The main Subversion repository is easily created with:
svnadmin create repo-directory

For our example, we choose the name svn-deb-repo and putitin /home/user.

If you plan to keep many packages in the one repository including upstream tarballs, consider
to put it on a hard disk with much free space and good performance (especially short disk
access times) since the repository will grow and the filesystem may become fragmented over
time.

2.4 Using by multiple developers

Multiple developers with local access to the repository may share it using a common group.
To do so, create a new group and add all developers to it. Run “chgrp -R sharedGroup repdir ;
chmod -R g+s repdir” for the shared group and the repository directory. Now, on local access
to this repository everybody will create files with the appropriate group setting. However, the
developers will need to set a liberal umask before using svn (like “0022”).

If somebody resists to do so, there is still a brute-force solution: fix the permissions with a
post-commit script. However, this is an “unsound” solution and may lead to ALL KINDS OF
PROBLEMS. MAKE SURE THAT YOU ARE AWARE OF THE POSSIBLE CONSEQUENCES
BEFORE YOU OPEN THE PANDORA BOX. See Debian BTS (http://bugs.debian.org/
cgi-bin/bugreport.cgi?bug=240630) for details. When you damage your repository,
don’t blame me and remember that there is “svnadmin recover”.

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=240630
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=240630

Chapter 2. Getting started 7

#!/bin/sh

POST-COMMIT HOOK
The following corrects the permissions of the repository files

REPOS="$1"
REV="$2"

chgrp —-R sharedGroup S$REPOS

replace sharedGroup with your group
chmod -R g+r $SREPOS

chmod -R g+w S$REPOS

24.1 SVN over SSH

To run Subversion over SSH, you basically need a shell on the target system and a subversion
repository located there which is created following the description above. The repository must
be configured for access by the system users of the remote system.

Assuming that your user name on the client system is the same as on the server side,
there is not much to configure. Just change the protocol specificaton from file:// to
svn+ssh://remoteusername@server-hostname in all examples showed in this manual.

Note that during svn-buildpackage tools actions a lot of SSH calls can be made and so the
user is asked for his login data. The regular method to deal with that is using an SSH key au-
thentication method together with ssh-agent and ssh-add to cache the passphrase in memory.
Another approach, which also brings a significant speed boost, is using a cached SSH con-
nection. This can be done with a new feature of OpenSSH (see GCC SSH connection caching
howto (http://gcc.gnu.org/wiki/SSH%20connection%20caching)) or a third-party
tool like £sh.

If you wish to use fsh over ssh you could specify a custom transport method in subver-
sions’s configuration. To do so, edit the file ~/.subversion/config and add the section
[tunnels] toit, following by your custom transport definition. Example:

personal subversion config with custom ssh tunnel command
[tunnels]

SSH account on svn.d.o

compression is enabled in the ssh config

deb = fsh -1 blade

SSH account for NQ intranet, set fix username

ng = ssh -C -1 zomb

You can use the new defined tunnels in a similar ways as described above but replace svn+ssh
with svn+tunnelname, so the final URL looks like:

http://gcc.gnu.org/wiki/SSH%20connection%20caching

Chapter 2. Getting started 8

svn+deb://svn.debian.org/svn/myproject/ourpackage/trunk

2.4.2 Anonymous access

You can allow outsiders to have anonymous (read-only) access using the svnserve program, as
described in the Subversion documentation.

Another method is using HTTP/WebDAV with Apache2. More about a such setup can
be found in the Subversion Book and the SubversionApache2SSL Howto (http://wiki.
debian.net/?SubversionApache2SSLHowto). svn.debian.org (http://svn.debian.
org/)is an example site granting anonymous access to some selected projects hosted there.

http://wiki.debian.net/?SubversionApache2SSLHowto
http://wiki.debian.net/?SubversionApache2SSLHowto
http://svn.debian.org/
http://svn.debian.org/

Chapter 3

Importing Debian packages

3.1 Importing from existing source package files

The svn-inject utility is intended to import already packaged source packages into a new
subdirectory of the repository, creating the repository layout as needed. Normally, it takes two
arguments: the .dsc file of your package and the base URL of the Subversion repository.

svn—-inject translucency_x*dsc file:///tmp/z
cp /tmp/translucency_0.6.0.orig.tar.gz /tmp/tarballs || true
mkdir —-p translucency/branches/upstream
tar -z -x —-f /tmp/translucency_0.6.0.orig.tar.gz

mv * current

svn —g import -m"Installing original source version" translucency file:///tmp
svn —-m Tagging upstream source version copy file:///tmp/z/translucency/branch
upstream/current file:///tmp/z/translucency/branches/upstream/0.6.0 —-g

svn -m Forking to Trunk copy file:///tmp/z/translucency/branches/upstream/cur

dpkg-source -x /tmp/translucency_0.6.0-1.dsc

dpkg-source: extracting translucency in translucency-0.6.0

svn_load_dirs file:///tmp/z/translucency/trunk . =«

Running
Running
Running
Running
Running
Running
Running
Running

Running

/usr/bin/svn
/usr/bin/svn
/usr/bin/svn
/usr/bin/svn
/usr/bin/svn
/usr/bin/svn
/usr/bin/svn
/usr/bin/svn

/usr/bin/svn

Cleaning up /tmp/svn

propset
propset
propset
propset
propget
propget
propget

svn:
svn:
:executable
svn:

svn

svn:
:eol-style Makefile

sSvn

svn:

executable
executable

executable

initscript
debian/rules
mounttest.sh

mount .translucency

eol-style base.h

eol-style translucency.8

commit -m Load translucency-0.6.0 into translucency/trun

update

_load_dirs_7jD70enzVjI

Chapter 3. Importing Debian packages 10

Storing trunk copy in /tmp/translucency.

svn co file:///tmp/z/translucency/trunk /tmp/translucency —-qgq
svn propset svn:executable 1 debian/rules —q

svn —-m"Fixing debian/rules permissions" commit debian -g
Done! Removing tempdir.

Your working directory is /tmp/translucency - have fun!

If you omit the URL, svn-inject will try to use the URL of the current directory as base URL.
I would not rely on this, however.

3.2 On-Build-Time merging

A special feature of svn-buildpackage is so called mergeWithUpstream-mode. Many projects
do not want to keep the whole upstream source under revision control, eg. because of the large
amount of required disc space and process time. Sometimes it makes sense to keep only the
debian/ directory any maybe few other files under revision control.

The task of exporting the source from repository and adding it to the upstream source be-
fore building becomes annoying the time. But the svn-buildpackage tools automate
most of this work for you: they switch to so called mergeWithUpstream-mode if a special
flag has been detected: the mergeWithUpstream (Subversion) property of the debian di-
rectory. svn-buildpackage will merge the trunk with upstream source on build time and
svn-upgrade will only update the changed files in this case.

To enable this feature during the inital import of the source package, simply add the —o switch
to the svn-inject call and it will prepare the source for with mergeWithUpstream-mode:
reduce the set of files to those modified for Debian and set the mergeWithUpstream property.

But what, if you decide to switch to mergeWithUpstream-mode after the package has
been injected? To do this, checkout the whole repository, remove the files not changed
in the Debian package from both upstream source and Debian branch (svn rm) and set
the mergeWithUpstream property on debian in the trunk directory with svn propset
mergeWithUpstream 1 debian.

If you actually decide to stop using the mergeWithUpstream-mode, unset the mergeWithUp-
stream property as follows: svn propdel mergeWithUpstream debian/.

If you don’t want to store the upstream sources of all your packages in the repository, you
can pass the ~——no-branches switch to svn-inject, which will prevent svn-inject from
creating a branches subdirectory.

11

Chapter 4

Common tasks

4.1 Checkout

svn-inject will do the initial checkout for you. If you need another working copy, run

svn co protocol://repository-base-url/yourpackage

4.2 Building the package

Change to your trunk directory and run:
svn-buildpackage -us -uc -rfakeroot

You may recognice the options above — they are passed directly to the build command
(dpkg-buildpackage by default). Normaly, the build is done in another directory (exporting
the source with cp-la-like method). If you wish the resulting packages to be placed in the direc-
tory above, use the ——svn-move option. To run Lintian after the build, use ~——svn-lintian
option. More options are described in the manpage (‘svn-buildpackage’ on page 14).

4.3 Working with source

Every time when you add or modify something, svn-buildpackage won't let you proceed
unless suspicious files are in the clean state (unless you use the -——svn-ignore switch). You
use the commands described in ‘Basic svn usage” on page 5 to register the new files (or move
or delete the old ones) and commit the changes to the repository.

Chapter 4. Common tasks 12

4.4 Handling new upstream versions
Upgrading with new upstream version normaly happens in two steps:

* the current tree in the upstream branch is upgraded with the source
from the new upstream package (the old version is kept in repository in
branches/upstream/oldVersion).

¢ The version in trunk/ becomes upgraded by merging the changes between the up-
stream versions into the t runk/ directory.

The script svn-upgrade (formerly svn-uupdate) does both things for you and also cre-
ates a new changelog entry. The first step is done internaly by using a third party script
(svn_load_dirs, see Subversion book for documentation), the second step is done with the
merge command of svn. Just run svn-upgrade from you local working directory (which
corresponds the t runk/ checkout product).

After running svn-upgrade some files may be in conflicting state. This is naturaly happens
if you have modified some files in the upstream package and now upstream did something
similar on the same positions so svn merge was confused.

When svn-upgrade complains about files in conflicting state, fix them manualy. When done,
use the svn resolved command to mark them as clean and svn commit to update the
repository.

4.5 Finalizing the Revision

When you are ready to upload a new revision of your package, everything builds fine, the
changelog is cleaned up and the package is tested, you can do the final build and tag the end
version. To do so, add —-svn-tag switch and after the package is built, it will be tagged (by
creating a copy of the t runk/ directory as said above).

13

Chapter 5

Command reference

5.1 svn-inject

5.1.1 NAME

svn-inject - puts a Debian source package into Subversion repository

5.1.2 SYNOPSIS

sun-inject [options] <package>\&.dsc <repository URL>

51.3 "OPTIONS"

sun-inject accepts the following options on the command-line:
[-h] print the help menu

[-v] Make the command verbose

[-q] Hide less important messages

[-1] Layout type. 1 (default) means package/{trunk,tagsbranches,...} scheme, 2 means the
{trunk,tags,branches,...}/package scheme. 2 is not implemented yet.

[-t directory] Specify the directory where the .orig.tar.gz files are stored on the local machine.

[-d | —do-like=directory] Looks at the working directory of some other package and uses its
base URL, tarball storage directory and similar checkout target directory.

[-c number] Checkout nothing (0), trunk directory (1) or everything (2) when the work is done.

[-O | —no-branches] Do not create the ‘branches’ subdirectory at all. This works similar to -o but
all changes on upstream files (eg. meta changes like updating the config.guess and config.sub
files) are ignored and the upstream branch is not used.

Chapter 5. Command reference 14

5.2 svn-buildpackage

52.1 NAME

svn-buildpackage - build Debian packages from SVN repository

5.2.2 SYNOPSIS

svn-buildpackage [OPTIONS...] [OPTIONS for dpkg-buildpackage |

5.2.3 "DESCRIPTION"

Builds a Debian package from a Subversion repository. The source code repository must be in
the format created by svn-inject, and this script must be executed from the working directory
(trunk/package).

By default, the working directory is used as the main source directory (assuming the whole
upstream source is being stored in the repository). The alternative is so called "merge mode".
With this method, only the debian directory (and maybe some other modified files) are stored
in the repository. Atbuild time, the contents of the svn trunk are copied to the extracted tarball
contents (and can overwrite parts of it). To choose this working model, set the svn property
mergeWithUpstream on the Debian directory ("svn propset mergeWithUpstream 1 debian").

The default behaviour is as follows:
Check the working directory, complain on uncommited files (also see —svn-ignore-new)
Copy the orig tarball to the build area if necessary (also see —svn-no-links)

Extract the tarball (in merge mode) or export the svn work directory to the build directory (also
see below and —svn-no-links)

Build with dpkg-buildpackage (also see —svn-builder , —svn-lintian , etc.)

Create a changelog entry for the future version

5.24 "OPTIONS"

sun-buildpackage accepts the following options on the command-line:

[—svn-builder=COMMAND] Specifies alternative build command instead of dpkg-
buildpackage, eg. debuild, pdebuild, etc. Every parameters that svn-buildpackage doesn’t
know (—svn-*) are passed to COMMAND. There is no difference between the command line
and config file parameters . They are used at the same time. WARNING: shell quotation rules
do not completely apply here, better use wrappers for complex constructs. Using this op-
tion may break —svn-lintian , —svn-linda and —svn-move functionality. Some functions may be

Chapter 5. Command reference 15

disabled when a custom build command is used because the output file location is not pre-
dictable.

[—svn-ignore-new | —svn-ignore | Don’t stop on svn conflicts or new/changed files. To set this
behaviour for single files set the "deb:ignoreM" property to 1 on them. Also see documentation
of the svn:ignore property in the SVN book.

[—svn-dont-clean] Don’t run debian/rules clean (default: clean first)

[—svn-no-links] Don’t use file links but try to export or do hard copies of the working directory
(default: use links where possible). This is useful if your package fails to build because some
files, empty directories, broken links, ... cannot not be transported with in the default link-
copy mode.

[—svn-dont-purge] Don’t remove the build directory when the build is done. (Default: remove
after successful build)

[—sun-reuse] If possible, reuse an existing build directory in subsequent builds. The build
directory is not purged after the build, it is not renamed when a build starts and the files are
just copied over into it. Useful in mergeWithUpstream mode with large packages.

[—svn-export] Just export the working directory and do neccessary code merge operations, then
exit.

[—sun-tag] Final build: Tag, export, build cleanly & make new changelog entry
[—svn-tag-only | —svn-only-tag] Don’t build the package, do only the tag copy

[—svn-retag] If an existing target directory has been found while trying to create the tag copy,
remove the target directory first.

[—sun-tag] Final build: Tag, export, build cleanly & make new changelog entry
[—svn-noautodch] No new Debian changelog entry is added automatically.
[—svn-lintian | —svn-linda | Run lintian or linda on the resulting changes file when done.

[—svn-move] When done, move the created files (as listed in .changes) to the parent directory,
relative to the one where svn-buildpackage was started.

[—sun-move-to=. ..] Specifies the target directory to move generated files to.

[—svn-pkg=packagename] Overrides the detected package name. Use with caution since it could
be set too late during the processing (eg. still have the old value when expanding shell vari-
ables).

[—svn-override=var=value,anothervar=value] Overrides any config variable that has been autode-
tected or found in .svn/deb-layout.

[—svn-prebuild | —svn-postbuild | —svn-pretag | —svn-posttag] Commands (hooks) to be executed
before/after the build/tag command invocations, e.g. to download the orig tarballs from the
archive. Shell code can be emdded here though it is not recommended. Various helping vari-
ables are available in the environment, see ENVIRONMENT VARIABLES below for detailed
explanation.

Chapter 5. Command reference 16

[—svn-noninteractive] With this parameter svn-buildpackage will not interact with the user
[—svn-verbose] More verbose program output

[-h | —help] Show the help message

5.2.5 "CONFIGURATION FILE"

svn-buildpackage’s behaviour can be modified using the file ~/.svn-buildpackage.conf. Ad-
ditional parts can be added in each package working directory using the file .svn/svn-
buildpackage.conf. It is essentially a list of the long command line options (with-
out leading minus signs), one argument per line (without quotes surrounding multi-
word arguments). The variables are expanded with the system shell if shell vari-
ables are found there. Avoid ~ sign because of unreliable expansion: it is better
to use $HOME instead. Example: .nf svn-builder=debuild -EPATH svn-no-links svn-
override=origDir=PHOME/debian/upstream /$PACKAGE # svn-ignore-new #svn-lintian .fi

5.2.6 "DIRECTORY LAYOUT HANDLING"

By default, svn-buildpackage expects a configuration file with path/url declaration, .svn/deb-
layout. The values there can be overridden with the —svn-override option, see above. If a config
file could not be found, the settings are autodetected following the usual assumptions about
local directories and repository layout. In addition, the contents of a custom file debian/sun-
deblayout will be imported during the initial configuration. Package maintainers can store this
file in the repository to pass correct defaults to new svn-buildpackage users. The format is
the same as in the file \&.svn/deb-layout \&. As an alternative to the debian/svn-deblayout file,
maintainers can set Subversion properties for the debian/ directory; any properties of debian/
which have a name of the form svn-bp:PROP will be the source of a PROP setting which has
the value indicated by the first line of the property value.

5.2.7 "ENVIRONMENT VARIABLES"

The following environment variables are exported by svn-buildpackage and can be used in
hook commands or the package build system.

PACKAGE

package The source package name

SVN_BUILDPACKAGE Version of svn-buildpackage

TAG_VERSION

debian_version The complete Debian version string, also used for the tag copy
non_epoch_version Same as debian_version but without any epoch strings

upstream_version Same as debian_version but without Debian extensions

Chapter 5. Command reference 17

guess_loc Guessed upstream source package name in the pool, something like libm/libmeta-
html-perl_3.2.1.0.orig.tar.g

DIFFSRC (experimental) shows the location of generated diff file
The following variables are understood by svn-buildpackage:
FORCETAG Ignore the signs of an incomplete changelog and tag the repository anyway

FORCEEXPORT Export upstream source from the repository even if mergeWithUpstream
property is set

DEBIAN_FRONTEND If DEBIAN_FRONTEND is set to ‘'noninteractive’ —svn-noninteractive is
called silently

5.2.8 "RECOMMENDATIONS"

Use shell aliases. Here are some examples for Bash: .nf alias svn-b="svn-buildpackage -us -uc
-rfakeroot —svn-ignore"; alias svn-br="svn-b —svn-dont-purge —svn-reuse"; alias svn-bt="svn-
buildpackage —svn-tag -rfakeroot”; .fi

Those commands have respective meanings: build regardless of new or changed files; build
regardless of new or changed files and reuse the build directory; build (for upload) and tag.

SSH is the easiest way to access remote repositories, although it usually requires entering a
password more frequently with svn-buildpackage. Workarounds include using an ssh key
without a passphrase (although this is insecure and still relatively slow), or the SSH connec-
tion caching feature present in recent versions of SSH. For details, see the svn-buildpackage
manual.

Another way to get a remote link is using the Subversion DAV module (with SSL and Apache
user authentication), see the svn-buildpackage HOWTO manual for details.

5.3 svn-upgrade

5.3.1 NAME

svn-upgrade - upgrade source package from a new upstream revision

5.3.2 SYNOPSIS

sun-upgrade

Chapter 5. Command reference 18

5.3.3 "DESCRIPTION"

sun-upgrade modifies a Debian package source located in a Subversion repository, upgrading
it to a new upstream release. The repository filesystem tree must be in the format created by
svn-inject.

5.3.4 "OPTIONS"

sun-upgrade accepts the following options on the command-line:

[-V STRING | —version STRING] Forces a different upstream version string

[-c | —clean] Runs "make clean" and removes the debian/ directory in the new source.
[-P STRING | —packagename STRING] Forces a different package name

[-v | —verbose] More verbose program output

[-r | —replay-conflicting | Extra cleanup run: replaces all conflicting files with upstream versions.
Review of "svn status" output before doing that could make sense.

[-N | —noautodch] Upgrade without making a new changelog entry.
[—noninteractive | Turn off interactive mode.
[—ignoreerrors] In noninteractive mode, ignore errors.

Tarballs must be compressed with gzip or bzip2.

19

Chapter 6

Further documentation

6.1 Various links

¢ Subversion Homepage: http://subversion.tigris.org/
¢ The Subversion Book: http://svnbook.red-bean.com/

e Subversion vs. CVS and others: http://better—-scm.berlios.de/

6.2 Copyright

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL
(file:///usr/share/common-1licenses/GPL)in the Debian GNU/Linux distribution or
on the World Wide Web at http://www.gnu.org/copyleft/gpl.html. You can also ob-
tain it by writing to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.

http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://better-scm.berlios.de/
file:///usr/share/common-licenses/GPL
http://www.gnu.org/copyleft/gpl.html

	Introduction
	Purpose
	Why a version control system?
	Features
	Contents overview
	Popular repository layouts

	Getting started
	Quick guide
	Basic svn usage
	Creating Subversion repository
	Using by multiple developers
	SVN over SSH
	Anonymous access

	Importing Debian packages
	Importing from existing source package files
	On-Build-Time merging

	Common tasks
	Checkout
	Building the package
	Working with source
	Handling new upstream versions
	Finalizing the Revision

	Command reference
	svn-inject
	NAME
	SYNOPSIS
	"OPTIONS"

	svn-buildpackage
	NAME
	SYNOPSIS
	"DESCRIPTION"
	"OPTIONS"
	"CONFIGURATION FILE"
	"DIRECTORY LAYOUT HANDLING"
	"ENVIRONMENT VARIABLES"
	"RECOMMENDATIONS"

	svn-upgrade
	NAME
	SYNOPSIS
	"DESCRIPTION"
	"OPTIONS"

	Further documentation
	Various links
	Copyright

