Actual source code: test9.c
slepc-3.19.2 2023-09-05
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test ST with four matrices and split preconditioner.\n\n";
13: #include <slepcst.h>
15: int main(int argc,char **argv)
16: {
17: Mat A,B,C,D,Pa,Pb,Pc,Pd,Pmat,mat[4];
18: ST st;
19: KSP ksp;
20: PC pc;
21: Vec v,w;
22: STType type;
23: PetscScalar sigma;
24: PetscInt n=10,i,Istart,Iend;
26: PetscFunctionBeginUser;
27: PetscCall(SlepcInitialize(&argc,&argv,(char*)0,help));
28: PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
29: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nTest ST with four matrices, n=%" PetscInt_FMT "\n\n",n));
30: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
31: Compute the operator matrices
32: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
34: PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
35: PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n));
36: PetscCall(MatSetFromOptions(A));
37: PetscCall(MatSetUp(A));
39: PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
40: PetscCall(MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n));
41: PetscCall(MatSetFromOptions(B));
42: PetscCall(MatSetUp(B));
44: PetscCall(MatCreate(PETSC_COMM_WORLD,&C));
45: PetscCall(MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,n,n));
46: PetscCall(MatSetFromOptions(C));
47: PetscCall(MatSetUp(C));
49: PetscCall(MatCreate(PETSC_COMM_WORLD,&D));
50: PetscCall(MatSetSizes(D,PETSC_DECIDE,PETSC_DECIDE,n,n));
51: PetscCall(MatSetFromOptions(D));
52: PetscCall(MatSetUp(D));
54: PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
55: for (i=Istart;i<Iend;i++) {
56: PetscCall(MatSetValue(A,i,i,2.0,INSERT_VALUES));
57: if (i>0) {
58: PetscCall(MatSetValue(A,i,i-1,-1.0,INSERT_VALUES));
59: PetscCall(MatSetValue(B,i,i,(PetscScalar)i,INSERT_VALUES));
60: } else PetscCall(MatSetValue(B,i,i,-1.0,INSERT_VALUES));
61: if (i<n-1) PetscCall(MatSetValue(A,i,i+1,-1.0,INSERT_VALUES));
62: PetscCall(MatSetValue(C,i,n-i-1,1.0,INSERT_VALUES));
63: PetscCall(MatSetValue(D,i,i,i*.1,INSERT_VALUES));
64: if (i==0) PetscCall(MatSetValue(D,0,n-1,1.0,INSERT_VALUES));
65: if (i==n-1) PetscCall(MatSetValue(D,n-1,0,1.0,INSERT_VALUES));
66: }
68: PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
69: PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
70: PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
71: PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
72: PetscCall(MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY));
73: PetscCall(MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY));
74: PetscCall(MatAssemblyBegin(D,MAT_FINAL_ASSEMBLY));
75: PetscCall(MatAssemblyEnd(D,MAT_FINAL_ASSEMBLY));
76: PetscCall(MatCreateVecs(A,&v,&w));
77: PetscCall(VecSet(v,1.0));
79: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
80: Compute the split preconditioner matrices (four diagonals)
81: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
83: PetscCall(MatCreate(PETSC_COMM_WORLD,&Pa));
84: PetscCall(MatSetSizes(Pa,PETSC_DECIDE,PETSC_DECIDE,n,n));
85: PetscCall(MatSetFromOptions(Pa));
86: PetscCall(MatSetUp(Pa));
88: PetscCall(MatCreate(PETSC_COMM_WORLD,&Pb));
89: PetscCall(MatSetSizes(Pb,PETSC_DECIDE,PETSC_DECIDE,n,n));
90: PetscCall(MatSetFromOptions(Pb));
91: PetscCall(MatSetUp(Pb));
93: PetscCall(MatCreate(PETSC_COMM_WORLD,&Pc));
94: PetscCall(MatSetSizes(Pc,PETSC_DECIDE,PETSC_DECIDE,n,n));
95: PetscCall(MatSetFromOptions(Pc));
96: PetscCall(MatSetUp(Pc));
98: PetscCall(MatCreate(PETSC_COMM_WORLD,&Pd));
99: PetscCall(MatSetSizes(Pd,PETSC_DECIDE,PETSC_DECIDE,n,n));
100: PetscCall(MatSetFromOptions(Pd));
101: PetscCall(MatSetUp(Pd));
103: PetscCall(MatGetOwnershipRange(Pa,&Istart,&Iend));
104: for (i=Istart;i<Iend;i++) {
105: PetscCall(MatSetValue(Pa,i,i,2.0,INSERT_VALUES));
106: if (i>0) PetscCall(MatSetValue(Pb,i,i,(PetscScalar)i,INSERT_VALUES));
107: else PetscCall(MatSetValue(Pb,i,i,-1.0,INSERT_VALUES));
108: PetscCall(MatSetValue(Pd,i,i,i*.1,INSERT_VALUES));
109: }
111: PetscCall(MatAssemblyBegin(Pa,MAT_FINAL_ASSEMBLY));
112: PetscCall(MatAssemblyEnd(Pa,MAT_FINAL_ASSEMBLY));
113: PetscCall(MatAssemblyBegin(Pb,MAT_FINAL_ASSEMBLY));
114: PetscCall(MatAssemblyEnd(Pb,MAT_FINAL_ASSEMBLY));
115: PetscCall(MatAssemblyBegin(Pc,MAT_FINAL_ASSEMBLY));
116: PetscCall(MatAssemblyEnd(Pc,MAT_FINAL_ASSEMBLY));
117: PetscCall(MatAssemblyBegin(Pd,MAT_FINAL_ASSEMBLY));
118: PetscCall(MatAssemblyEnd(Pd,MAT_FINAL_ASSEMBLY));
120: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
121: Create the spectral transformation object
122: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
124: PetscCall(STCreate(PETSC_COMM_WORLD,&st));
125: mat[0] = A;
126: mat[1] = B;
127: mat[2] = C;
128: mat[3] = D;
129: PetscCall(STSetMatrices(st,4,mat));
130: mat[0] = Pa;
131: mat[1] = Pb;
132: mat[2] = Pc;
133: mat[3] = Pd;
134: PetscCall(STSetSplitPreconditioner(st,4,mat,SUBSET_NONZERO_PATTERN));
135: PetscCall(STGetKSP(st,&ksp));
136: PetscCall(KSPSetTolerances(ksp,100*PETSC_MACHINE_EPSILON,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT));
137: PetscCall(STSetTransform(st,PETSC_TRUE));
138: PetscCall(STSetFromOptions(st));
139: PetscCall(STGetKSP(st,&ksp));
140: PetscCall(KSPGetPC(ksp,&pc));
142: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
143: Apply the operator
144: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
146: /* sigma=0.0 */
147: PetscCall(STSetUp(st));
148: PetscCall(STGetType(st,&type));
149: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"ST type %s\n",type));
150: PetscCall(PCGetOperators(pc,NULL,&Pmat));
151: PetscCall(MatView(Pmat,NULL));
152: PetscCall(STMatSolve(st,v,w));
153: PetscCall(VecView(w,NULL));
155: /* sigma=0.1 */
156: sigma = 0.1;
157: PetscCall(STSetShift(st,sigma));
158: PetscCall(STGetShift(st,&sigma));
159: PetscCall(PetscPrintf(PETSC_COMM_WORLD,"With shift=%g\n",(double)PetscRealPart(sigma)));
160: PetscCall(PCGetOperators(pc,NULL,&Pmat));
161: PetscCall(MatView(Pmat,NULL));
162: PetscCall(STMatSolve(st,v,w));
163: PetscCall(VecView(w,NULL));
165: PetscCall(STDestroy(&st));
166: PetscCall(MatDestroy(&A));
167: PetscCall(MatDestroy(&B));
168: PetscCall(MatDestroy(&C));
169: PetscCall(MatDestroy(&D));
170: PetscCall(MatDestroy(&Pa));
171: PetscCall(MatDestroy(&Pb));
172: PetscCall(MatDestroy(&Pc));
173: PetscCall(MatDestroy(&Pd));
174: PetscCall(VecDestroy(&v));
175: PetscCall(VecDestroy(&w));
176: PetscCall(SlepcFinalize());
177: return 0;
178: }
180: /*TEST
182: test:
183: suffix: 1
184: args: -st_type {{shift sinvert}separate output} -st_pc_type jacobi
185: requires: !single
187: TEST*/